Introduction to R Programming

Aziz Nanthaamornphong
College of Computing
Prince of Songkla University, Phuket Campus
E-mail: aziz.n@phuket.psu.ac.th

CoC

Introduction to R Programming

1/347

aziz.n@phuket.psu.ac.th

'\E‘menammenl Complex

DFO South Wharf @ &

o
. cmien & 0B
Map Satellite £ Fs Arden st M
= iy H 1
o g { ;5 Provost s 1+ € Auction Room 18
b i sy B=SH E - | Melbourne Museum @ Condars;
14 ok Shor sy
£l : & Royal Exhibifl L]
L] Victori H Building
PNy B O 8,
M 5 @ a a 5 ¢ a
North Melbourne £ 8 LT a a
@ 3 IESTTE u
1 a © aueen victoria Market v @ st Vincents o
est o 2 Hospital Melboure - &
N o -] sU L
ourne NG o §
& a .
§ 2 Nielbourre Netball pty Q) sinsi® State 3
?:f Festval Hall @ e §
Mel hou ime Star ® & Y 5 H
5 Obsérvation Whee! " hinatown Melbourne @ a E
£ The Distrct Dockiands ©) cBp Tt @ N a
g a Parliament &3° s Fitzroy Gardens
‘ a B ¥ Grand Hyatt Melbourne %) ° : €
wau Cooks’ Cottage @) o
i a N
£% water(rnmcny@ Melbourne Town Hall @ " i
a Y &
R w0 sipmigCnida, o
Plojc) s ap® cl - Jolimont
l ‘ = g £ ‘
Southern CrossE @, w'; \ Lot - ﬁ
Varra River 5 WomaRiver Mar.
Alexandra Gardens
I L oty |G @ Arts Centre Melbourne
i ﬂ'na National Gallery?
2 m"’f Brow elBolire Q iViariar
on /
mer sy Gioun e

KingsDomain

a
2] AAMI Park

2/347

Introduction to R Programming

Companies, Officials and NGO Using R
https://github.com/ThinkR-open/companies-using-r/blob/
master/README.md

Introduction to R Programming

https://github.com/ThinkR-open/companies-using-r/blob/master/README.md
https://github.com/ThinkR-open/companies-using-r/blob/master/README.md

Outline

Overview
Foundation

Data Structure
Control Structure
Function
Statistics

Data Visualization

Text Mining Application

Machine Learning

Introduction to R Programming

Overview

= = = = DA 5/347
Introduction to R Programming Overview

R Programming

The 2017 Top Programming Languages

Language Rank Types Spectrum Ranking

Ve @ o fooa
2 ¢ D78 BE
some @07 ESL
“ on D% BEL
so 80w Bl
. 2 B
omasom @0 B8

se ® AL

se @ W @

1. i 1o

Source: https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages

o = = = DA 6347

Introduction to R Programming Overview

R vs. Python

Popularity Rankings

source: https://blog.dominodatalab.com/comparing-python-and-r-for-data-science/
o

Introduction to R Programming Overview

Why Use R?

o It is defacto standard among professional statisticians.
o It is available for the Windows, Mac, and Linux operating systems.

@ R is a general purpose programming language, so you can use it to
automate analyses and create new functions that extend the existing
language features.

@ Because R is open source software, it's easy to get help from the user
community. Also, a lot of new functions are contributed by users,
many of whom are prominent statisticians.

Introduction to R Programming Overview

Why Learn R?

Relates to other Languages

Open Source Language

Cross-Platform Compatible Vast Community

Supports Extensions

Extremely
Comprehensive

Advanced Statistical Language

Flexible 'n’ Fun
Outstanding Graphs

Introduction to R Programming Overview

Skills of Data Science

e Data wrangling - 80% of the work in data science is data
manipulation.

o Data visualization - ggplot2 is one of the best data visualization tool.

@ Machine learning - when you're ready to start using (and learning)
machine learning, R has some of the best tools and resources.

“Spending 100 hours on R will yield vastly better than spending 10
hours on 10 different tools.”

Introduction to R Programming Overview

The Data Science Process

Data Understanding Evaluation
Business Data Analytical
. Data Data q = Model Inter- Deployment
Understanding Discovery Integration Preparation Modelling Testing pretation o

Data Understanding

Package name Description

1. gridExtra Grid plotting functions (very useful to plot grids of plots
or tables)

2. corrplot Nice plots of correlation matrices (see screenshot in
Fig. 1)

3. ggplot2 Advanced plottir.}g. Iibr:?ry (exceeds any other library in
terms of customizing figures)

MASS Awide range of statistical functions

5. matlab Use real Matlab code in R (useful for Matlab to R
transitioners)

6. iterator Wery useful to read files line by line that are larger than
the RAM of my machine

7. dplyr All kinds of data manipulation

-1/347

Introduction to R Programming Overview

Data Preparation
Package name Description

Compile functions for faster execution (increase in
speed by up to a factor of two depending on use case)
Parallelization of loops, in my opinion inferior to the
parSapply function in the doParallel package
Improved parallel computing, can speed up things up
to a factor of ten depending on the use case
(generally, R does not use more than one processor
core)

8. compiler

9. foreach

10. doParallel

Introduction to R Programming Overview

Analytical Modelling

Package name Description

Large-scale model hyperparameter grid search. Itis
11. caret especially useful to combine different models
(supervised and unsupervised) using CaretEnsemble!
. Get fitting metrics (Caret provides some, but metrics
12. metrics ;
is a lot stronger!)
Generate formula objects from code (e.g., using the
aste function) for use in fitting functions (automatic
13. formula : .)) -) (
generation of functions from automatic feature
generation)
Original implementation of a SVM in R. Also includes

useful things for data analysis, such as fast Fourier

14. e1071 ; 2 . <
transforms, clustering, naive Bayes, some time series
functionality etc.

15. gdap Sentiment analysis for text mining

16. sentimentr Sentiment analysis for text mining

17. tidytext Context (topic) mining for text mining

Introduction to R Programming Overview

Evaluation
Package name Description

Cashes results to avoid lengthy computations
18. casher (particularly useful with large datasets — see the
iterator package above)

Plots radar charts (and business users love radar
charts!)

20. wordcloud Makes nice word clouds (again: looks nice)

19. fmsb

Expands the colour range and automatically
generates colour sequences for plots

Enable access to R functionality from other
programs, e.g., Tableau. Very helpful, since

21. RColorBrewer

22. Rserve
Tableau etc. are not able to perform real data

analysis, but only visualization.

Produce browser GUIs forcode to allow others to
23. shiny use it without needing to understand it (e.g.,
reporting). See Fig. 2!

% Frriirkdai F?ackage that_prod.uces readable text from within R
(is extended in knitr)

Package that compiles "literate code" (a mix of
25, knitr code and human-readable text) to share via html,
pdf or doc (see Fig. 1 above). Possible interaction

via GUI by integration with package shiny.

Introduction to R Programming Overview

Image Processing with R

300 250 200 150 100 50

350

50 100 150 200 250 . - , _ D0 15/347

Introduction to R Programming Overview

Data Visualization with R

Scatterplot
270
240
210
H .
1 .
k:
shiat g o ltem_Type
0 * Baking Goods
oo Hard Drinks * Breads
240 * Breakfast
%;g * Canned
1 © Dairy
1 'l !
'b L" * Frozen Foods
. .
& ' 1 ¥=. * Fruits and Vegetables
§ Health and Hygiene * Hard Drinks
2 SAT, [* Health and Hygiene
21 * Household
1 * Meat
1%8 * Others
60 * Seafood
30
* Snack Foods
270 * Soft Drinks
240 * Starchy Foods
210
180
150
120
90
60
30

000005010015020025030 000005010015020025030 000005010015020025030 0000.050100.150.200.250.30
ltem Visibility

=] 5 = = £ DA 16/347

Introduction to R Programmir Overview

About R

@ R is an open source statistical programming language and
environment for statistical computing and graphics

R supports user defined functions, and is capable of run-time calls to
C, C++, FORTRAN, Java

@ Available for Windows, Mac or Linux

Developed by Ross lhaka and Robert Gentlemen, University of
Auckland, in 1995.

Capability of R can be extended by packages (>1300)

R feels and looks are the same regardless of the underlying operating
system (for the most part)

Introduction to R Programming Overview

Concepts of R

Rather than setting up a complete analysis at once, the process is highly
interactive. You run a command, take the results and process it through
another command, take those results and process it through another
command. The cycle may include transforming the data, and looping back
through the whole process again. You stop when you feel that you have
fully analyzed the data. |

Introduction to R Programming Overview

How to Download?

@ Google it using R or CRAN (Comprehensive R Achive Network) -
http://www.r-project.org

e R Studio - https://www.rstudio.com /products/rstudio/download/

e R Commander - http://www.rcommander.com

Introduction to R Programming Overview

R Overview

@ You can enter commands one at a time at the command prompt (>)
or run a set of commands from a source file

@ There is a wide variety of data types, including vectors (numerical,
character, logical), matrices, dataframes, and lists

e To quit R, use q()

@ Most functionality is provided through built-in and user-created
functions and all data objects are kept in memory during an
interactive session

@ Basic functions are available by default. Other functions are contained
in packages that can be attached to a current session as needed

Introduction to R Programming Overview

R Overview (cont.)

o A key skill to using R effectively is learning how to use the built-in
help system. Other sections describe the working environment,
inputting programs and outputting results, installing new functionality
through packages and etc

@ A fundamental design feature of R is that the output from most
functions can be used as input to other functions

Introduction to R Programming Overview

R Interface

e Start the R system, the main window (RGui) with a sub window (R
Console) will appear

@ In the ‘Console’ window the cursor is waiting for you to type in some
R commands

Introduction to R Programming Overview

R Session

RStudio

Console ~/ -

R version 3.2.1 (2015-06-18) -- "World-Famous Astronaut”
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwini3.4.9 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type "license()' or ‘licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()’ for more information and
‘citation()’ on how to cite R or R packages in publications.

Type 'demo()’ for some demos, 'help()’ for on-line help, or
'help.start()" for an HIML browser interface to help.
Type "a()" to quit R.

During startup - Warning messages:
1: Setting LC_CTYPE failed, using
: Setting LC_COLLATE failed, using "
: Setting LC_TIME failed, using "C"
: Setting LC_MESSAGES failed, using "C"
: Setting LC_MONETARY failed, using "C"

Vs

&) Project: (None) +
Environment | History
£ [| [(#Impon Dataset- | | (&

7} Global Environment~

=0

List~

Environment is empty

Files Plots Packages Help Viewer
@ New Folder | © | Delete (5] Rename | gk More~
] 42 Home
+ Name Size Modified
TJ ©) .Rhistory 0B Sep 8, 2015, 4:33 PM

= Applications
=1 Applications (Parallels)
(=] Desktep
=1 Documents
= Downloads
& cit

1 Library

=1 Movies

£ Music

1 Pictures

@l public

Introduction to R Programmir Overview

R Introduction

@ Results of calculations can be stored in objects using the assignment
operators:
» An arrow (< —) formed by a smaller than character and a hyphen
without a space!

» The equal character "=

@ These objects can then be used in other calculations. There are some
restrictions when giving an object a name

» Object names cannot contain ‘strange’ symbols like !, +, -, #

» A dot (.) and an underscore (_) are allowed, also a name starting with
a dot

v

Object names can contain a number but cannot start with a number

v

R is case sensitive, X and x are two different objects, as well as temp
and temP.

Introduction to R Programming Overview

Examples

6

1| > #An example

2| > x <= c(1:10)

3| > x[(x>8) | (x<5)]
41011 1 2 3 4 9 10
5(> x

6([1] 1 2 3 4 5
7>

7

8 9 10

[m]

=

A

25/347

Introduction to R Programmi Overview

R Introduction (cont.)

@ To list the objects that you have in your current R session use the
function Is or the function objects
> 1s()
1] %"y

@ Most functions in R accept certain arguments. For example, one of
the arguments of the function Is is pattern. To list all objects starting
with the letter x:

>x2=9

>2 = 10
>1ls(pattern="x")
[1] "x" "xon

S WN

Introduction to R Programming Overview

R Introduction (cont.)

@ If you assign a value to an object that already exists then the
contents of the object will be overwritten with the new value
(without a warning!). Use the function rm to remove one or more
objects from your session
> rm(x,x2)

@ Lets create two small vectors with data and a scatterplot

z2 <- ¢(1,2,3,4,5,6)
z3 <- ¢(6,8,3,5,7,1)
plot(z2,2z3)

title("My first plot")

B WN

Introduction to R Programming Overview

My First Plot

My first plot

- 8]
P~ — o]
- C
[B o]
N -
L B o]
F— 2
[| | I [I
1 2 3 4 5 6

— —r = PR 25/ 347

Introduction to R Programming Overview

R Warning

R is a case sensitive language

FOO, Foo, and foo are three different objects

= = = = £ DAC 29/347
Introduction to R Programming Overview

R Workspace

@ Objects that you create during an R session are hold in memory, the
collection of objects that you currently have is called the workspace

@ The workspace is not saved on disk unless you tell R to do so

@ Your objects are lost when you close R and not save the objects, or
worse when R or your system crashes on you during a session

@ If you have saved a workspace image and you start R the next time, it
will restore the workspace. So all your previously saved objects are
available again

o Commands are entered interactively at the R user prompt. Up and
down arrow keys scroll through your command history

Introduction to R Programming Overview

Foundation

o = = £ DA 31/347
Introduction to R Programming Foundation

R Installation Setup

Download & Install
@ https://cran.rstudio.com/
@ http://www.rstudio.com
Documentation

@ https:
//cran.rstudio.com/doc/manuals/r-release/R-admin.pdf

@ https://www.rstudio.com/wp-content/uploads/2016/01/
rstudio-IDE-cheatsheet.pdf

Introduction to R Programming Foundation

https://cran.rstudio.com/
http://www.rstudio.com
https://cran.rstudio.com/doc/manuals/r-release/R-admin.pdf
https://cran.rstudio.com/doc/manuals/r-release/R-admin.pdf
https://www.rstudio.com/wp-content/uploads/2016/01/rstudio-IDE-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2016/01/rstudio-IDE-cheatsheet.pdf

Arithmetic with R

Addition

>1+2
2|3

-

Subtraction

i

>5-3
212

Division

o =y £ DA 33/347
Introduction to R Programming Foundation

Exponents

>273
8
>2%%3
8

ENERE N

Modulo Exponents

1|>5 %% 2
21

Order of Operations Exponents

>(100%2) + (50 / 2)
225

>(2+2) * 3

12

DW=

] = 34/347

Introduction to R Programming Foundation

Getting Help with R

Aside from Google search or visiting StackOverflow, there are some
built-in ways to get help with R!

Most R functions have online documentation.
@ help(topic) documentation on topic
@ help.search(“topic”) search the help system

@ apropos(“topic”) the names of all objects in the search list matching
the regular expression “topic”

@ help.start() start the HTML version of help
e str(a) display the internal structure of an R object

e summary(a) gives a “summary” of a, usually a statistical summary
but it is generic meaning it has different operations for different
classes of a

Introduction to R Programming Foundation

Comments

Comments are just everything that follows #. From a # to the end of the
line, the R parser just skips the text.
1| # This is a comment.

o = = DA 36/347
Introduction to R Programming Foundation

Getting Help with R (cont.)

@ Is() show objects in the search path; specify pat="pat" to search on a
pattern

Is.str() str() for each variable in the search path
dir() show files in the current directory
methods(a) shows S3 methods of a

methods(class=class(a)) lists all the methods to handle objects of
class a

Introduction to R Programming Foundation

Exercises

1| help(vector)

un

This will pop up a help window (need to pass a character string)
2| help.search('numeric')

fun

Can also use 7?7 for a search
2| ??7vector

Jun

Can also do a quick stats summary:
v <- ¢(1,2,3,4,5,6)
3| summary (v)

N

o = = DA 38/347

Introduction to R Programmir undation

Print

We can use the print() function to print out variables or strings:

print("hello")
[1] "hello"

N =

-

x <- 10
print (x)
[1] 10

w N

1| print (mtcars)

[m] = = =

£ DAC 39/347

Introduction to R Programming Foundation

Formatting

We can format strings and variables together for printing in a few different
ways:

paste() The paste() function looks like this: paste (..., sep =" ")

Where ... are the things you want to paste and sep is the separator you
want between the pasted items, by default it is a space. For example:

-

print(paste('hello', 'world'))
[1] "hello world"

N

-

print(paste('hello', 'world',sep='-|-"))
[1] "hello-|-world"

N

Introduction to R Programming Foundation

paste0()
paste0(..., collapse) is equivalent to paste(..., sep =
more efficiently.

", collapse), slightly

[

paste0('hello', 'world")
'helloworld’

N

sprintf

srpintf() is a wrapper for the C function sprintf, that returns a character
vector containing a formatted combination of text and variable values.
Meaning you can use % codes to place in variables by specifying all of
them at the end. This is best shown through example:

N

sprintf ("%s is %f feet tall\n", "Sven", 7.1)
'Sven is 7.100000 feet tall '

N

Introduction to R Programming Foundation

Variables

Rules for writing ldentifiers in R

@ Identifiers can be a combination of letters, digits, period (.) and
underscore (_)

@ It must start with a letter or a period. If it starts with a period, it
cannot be followed by a digit

© Reserved words in R cannot be used as identifiers

Valid identifiers in R
total, Sum, .fine.with.dot, this_is_acceptable, Number5

Invalid identifiers in R
tot@l, 5um, _fine, TRUE, .One

Introduction to R Programming Foundation

Variables (cont.)

You can use the < — character to assign a variable, note how it kind of
looks like an arrow pointing from the object to the variable name.

-

Use hashtags for comments
variable.name <- 100

N

1| # Let's see the variable
variable.name
100

w N

Introduction to R Programming Foundation

Working with variables

We can use variables together and work with them, for example:

bank.account <- 100

deposit <- 10

bank.account <- bank.account + deposit
bank.account

110

GTAWN R

You can assign with arrows in both directions, so you could also write the
following:

1‘2—>x ‘

An assignment won't print anything if you write it into the R terminal, but
you can get R to print it just by putting the assignment in parentheses.

-

(y <- "visible")
[1] "visible"

N

Introduction to R Programming Foundation

R actually allows for five assignment operators:

1| #leftward assignment
2| x <- 3

3|x =3

4| x <<- 3

5

6| #rightward assignment
713 -> x

83 ->> x

Note R is a case sensitive programming language.

1| x <- 1

2|y <- 3

3|z <-4

4| xxy*z

5[12

6| xxY*z

7| ## Error in eval(expr, envir, enclos): object 'Y' not found

o = = 45/347

Introduction to R Programming Foundation

Built-in Constants

Some of the built-in constants defined in R along with their values.

1| > LETTERS

2| [1] "A" "B" C" "D" "E" "F" "G" "H" "I" "J" "K' "L" "M" "N® "Q" "P" "Q" "R" "S"
3| [20] T tUTotyrotWeo Xt oyt vz

4| > letters

5| [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "1" "m" "n" "o" "p" "g" "r" "s"
6| [20] "t "u" tvyro oyt ovx" vyt vzt

70> pi

8| [1] 3.141593

9| > month.name

10| [1] "January" "February" "March" "April" "May" "June"

11| [71 "July" "August" "September" "October" "November" "December"

12| > month.abb

13| [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

o & 46/347
Introduction to R Programmi Foundation

R Data Types

Numeric - Decimal (floating point values) are part of the numeric class in
R

1|n <- 2.2 |

Integer - Natural (whole) numbers are known as integers and are also part
of the numeric class

1

|

When you write numbers like 4 and 3, they are interpreted as floating-point
numbers. To explicitly get an integer, you must write 4L and 3L.

>class (4)
"numeric"
>class (4L)
"integer"

D WN =

Introduction to R Programming Foundation

Logical - Boolean values (True and False) are part of the logical class. In
R these are written in All Caps.

-

t <- TRUE
f <- FALSE

N

Characters - Text/string values are known as characters in R. You use
quotation marks to create a text character string:

-

char <- "Hello World!"
char
'Hello World!'

w N

1

2| ¢ <- 'Single Quote Char'
3| c

4| 'Single Quote Char'

Introduction to R Programming Foundation

Checking Data Type Classes

You can use the class() function to check the data type of a variable:

>class (t)
'logical’
>class (f)
'logical’
>class(char)
'character'
>class(c)
'character'
>class(n)
10| 'numeric'
11| >class (i)
12| 'numeric'

O©OWONOOHAE WN -

o =y = 49/347
Introduction to R Programming Foundation

Vector Basics

Vectors are one of the key data structures in R which we will be using. A
vector is a 1 dimensional array that can hold character, numeric, or
logical data elements.

We can create a vector by using the combine function c(). To use the
function, we pass in the elements we want in the array, with each
individual element separated by a comma.

1

2| >nvec <- c¢(1,2,3,4,5)
3| >class(nvec)

4| 'numeric’

1

2| >cvec <= c('U",'S",'A")
3| >class(cvec)

4| 'character'

Introduction to R Programming Foundation

>lvec <- c(TRUE,FALSE)
>lvec

TRUE FALSE
>class(lvec)

'logical’

GTAWN R

Note we CANNOT mix data types of the elements in an array, R will
convert the other elements in the array to force everything to be of the
same data type.

Introduction to R Programming Foundation

Here's a quick example of what happens with arrays given different data
types:

>v <- c(FALSE,2)
>v

02

>class (v)
'numeric’

GAWN -

>v <= c('A',1)
>v

A g
>class(v)
'character’

G W

o = = 52/347

Introduction to R Programming Foundation

Vector Names

We can use the names() function to assign names to each element in our
vector. For example, imagine the folowing vector of a week of
temperatures:

un

>temps <- ¢(72,71,68,73,69,75,71)
>temps
72 71 68 73 69 75 71

w N

We know we have 7 temperatures for 7 weekdays, but which temperature
corresponds to which weekday? Does it start on Monday, Sunday, or
another day of the week? This is where names() can be assigned in the
following manner:

Introduction to R Programming Foundation

1|>names(temps) <- c('Mon','Tue','Wed','Thu','Fri','Sat','Sun')

Now what happens when we display the named vector:

>temps
Mon 72
Tue 71
Wed 68
Thu 73
Fri 69
Sat 75
Sun 71

O~NO O WN -

= = = 9 54/347

Introduction to R Programming Foundation

We also don't have to rewrite the names vector over and over again, we
can use simple use a variable name as a names() assignment, for example:

>days <- c('Mon','Tue','Wed','Thu','Fri','Sat','Sun')
>temps2 <- c¢(1,2,3,4,5,6,7)

>names (temps2) <- days

>temp2

Mon 1

Tue
Wed
Thu
Fri
Sat
Sun

HOWONOOHEWN -
~Noos wN

- =

Introduction to R Programming Foundation

Vector Indexing and Slicing

You can use bracket notation to index and access individual elements from
a vector:

1| >v1l <- ¢(100,200,300)
2| >v2 <- c('a','b','c’
3| >vi

41 >v2

5| 100 200 300

6| 'ta' b et

Indexing works by using brackets and passing the index position of the
element as a number. Keep in mind index starts at 1.

>vi[2]
200
>v2[2]
b

Gl W

Introduction to R Programming Foundation

Multiple Indexing

We can grab multiple items from a vector by passing a vector of index
positions inside the square brackets. For example:

>vifc(1,2)]
100 200
>v2[c(2,3)]
bt
>v2[c(1,3)]

gt gt

OO WN -

Introduction to R Programming Foundation

Slicing

You can use a colon (:) to indicate a slice of a vector. The format is:
vector[start_index:stop_index] and you will get that “slice” of the
vector returned to you. For example:

>v <- ¢(1,2,3,4,5,6,7,8,9,10)
>v[2:4]

234

>v[7:10]

789 10

Gl W

Notice how the element at both the starting index and the stopping index
are included.

Introduction to R Programming Foundation

Indexing with Names

We've previously seen how we can assign names to the elements in a
vector, for example:

[

>v <- ¢(1,2,3,4)
>names (v) <- c('a','b','c','d")

N

We can use those names along with the indexing brackets tograb
individual elements from the array.

—

>v['a']
a: 1

N

Or pass in a vector of names we want to grab:

1
>vlc('a','c','b")]

a1

c 3

b 2

G W N

Introduction to R Programming Foundation

Comparison Operators and Selection

We can use comparison operators to filter out elements from a vector.
Sometimes this is referred to as boolean/logical masking, because you are
creating a vector of logicals to filter out results you want. Let’s see an
example of this:

v

GAWN -

>
a
b
c
d

W N

[N

>v[v>2]
c 3
d 4

w N

Let's break this down to see how it works, we first get the vector v>2:

>v>2

a FALSE
b FALSE
C TRUE
D TRUE

A WN -

Introduction to R Programming Foundation

Now we basically pass this vector of logicals through the brackets of the
vector and only return true values at the matching index positions:

-

>v[v>2]
c 3
d 4

w N

We could also assign names to these logical vectors and pass them as well,
for example:

>filter <- v>2
>filter
a FALSE
b FALSE
c TRUE
d TRUE

DO WN -

=

>v[filter]
2|l c 3
d 4

w

Introduction to R Programming Foundation

Comparison Operators

In R we can use comparison operators to compare variables and return
logical values. Let's see some relatively self-explanatory examples:
Greater Than

5>6
FALSE
6 > 5
TRUE

W N =

We can also do element by element comparisons for two vectors:

vl <- c(1,2,3)

v2 <- ¢(10,20,30)
vl < v2

TRUE TRUE TRUE

ENERE N

Greater Than or Equal to

6 >= 6
TRUE
6 >= 5
TRUE
6 >= 7
FALSE

DO WN -

Introduction to R Programming Foundation

Less Than and Less than or Equal To

3 <2
FALSE
2 <=2
TRUE

AW

Be very careful with comparison operators and negative numbers! Use
spacing to keep things clear. An example of a dangerous situation:

[

var <- 1
var
3|1

[N

N

var < -2
FALSE

w

Not Equal

5 =2
TRUE
5 !=5
FALSE

ENERENE

Introduction to R Programming Foundation

Equal

5 == 5
TRUE
2
F

=]

== 3
ALSE

ENERE N

Vector Comparisons
We can apply a comparison of a single number to an entire vector, for
example:

[N

v <- ¢(1,2,3,4,5)
v <2
TRUE FALSE FALSE FALSE FALSE

w N

1|v == 3
FALSE FALSE TRUE FALSE FALSE

N

Introduction to R Programming Foundation

Working with Vectors

We can perform basics arithmetic with vectors and operations will occur
on an element by element basis, for example:

1| vl <- c(1,2,3)
2| v2 <- ¢(5,6,7)

Adding Vectors

1| >vi+v2
2|6 8 10

Subtracting Vectors

>vi-vi
000
>vi-v2
-4 -4 -4

ENERE NN

Multiplying Vectors

1| >vi*v2
215 12 21

Dividing Vectors

1| >v1/v2
0.2 0.333333333333333 0.428571428571429

[N

Introduction to R Programming Foundation

Functions with Vectors

Some useful functions that we can use with vectors. A function will be in
the form: name_of_function(input)

For example, if you want to sum all the elements in a numeric vector, you
can use the sum() function. For example:

>vil
123
>sum(v1)
6

DW=

We can also check for things like the standard deviation, variance,
maximum element, minimum element, product of elements:

v <- ¢(12,45,100,2)

>sd(v)
44.1691823182937

W N =

=

2| >var(v)
1950.91666666667

w

2| >max (v)
100

w

Introduction to R Programming Foundation

1| #Minimum Element
2| >min(v)
3|2

#Product of elements
>prod(v1)
6

>prod(v2)
210

AW N

Check out this
https://cran.r-project.org/doc/contrib/Short-refcard.pdf

= = DAC 67/347
Introduction to R Programming Foundation

https://cran.r-project.org/doc/contrib/Short-refcard.pdf

Data Structure

= = = = DAC 68/347
Introduction to R Programming Data Structure

Matrix

A matrix will allow us to have a 2-dimensional data structure which
contains elements consisting of the same data type.

Tip: A quick tip for quickly creating sequential numeric vectors, you can
use the colon notation from slicing to create sequential vectors:

>1:10
12345678910
> v <- 1:10
12345678910

B W

To create a matrix, we use the matrix() function. We can pass in a vector
into the matrix:

matrix(v)
~~I1°7IL,L1]
[1,1 1
[2,1 2
[3,1 3
[4,] 4
5,1 5
[6,] 6
7
8
9
1

©0O~NOU A WN R

(7,1
(8,1
9,1
[10,]

-
=1

L
N
o

Introduction to R Programming Data Structure

Here we have a two-dimensional matrix which is 10 rows by 1 column.
Now what if we want to specify the number of rows?

We can pass the parameter/argument into the matrix function called nrow
which stands for number of rows:

matrix(v,nrow=2)

~~1~~1°°1,11 [,2] (,3) [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

W=

The byrow argument allows you to specify whether or not you want to fill
out the matrix by rows or by columns. For example:

matrix(1:12,byrow = FALSE,nrow=4)
~~1°°Il,1] 2] [L3]

[1,1 1 5 9

[2,] 2 6 10

3,1 3 711

[4,] 4 8 12

DA WN -

Introduction to R Programming Data Structure

Creating Matrices from Vectors

We can combine vectors to later input them into a matrix. For example
imagine the following vectors below of stock prices:

goog <- c(450,451,452,445,468)

msft <- c(230,231,232,236,228)

stocks <- c(goog,msft)

stock.matrix <- matrix(stocks,byrow=TRUE,nrow=2)
stock.matrix

~~1[,11 [,2]1 [,3] [,4] [,5]
[1,] 450 451 452 445 468
[2,] 230 231 232 236 228

OO ~NOU D WNH

Ly

Introduction to R Programming Data Structure

Naming Matrices

It would be nice to name the rows and columns for reference. We can do
this similarly to the names() function for vectors, but in this case we
define colnames() and rownames(). So let's name our stock matrix:

days <- c('Mon','Tue','Wed','Thu','Fri')
st.names <- c('GODOG','MSFT')

colnames (stock.matrix) <- days

rownames (stock.matrix) <- st.names
stock.matrix

“"IMon Tue Wed Thu Fri
GOOG 450 451 452 445 468
MSFT 230 231 232 236 228

© O~ S WN

Introduction to R Programming Data Structure

Matrix Arithmetic

We can perform element by element mathematical operations on a matrix

with a scalar (single number) just like we could with vectors. Let's see
some quick examples:

1| > mat <- matrix(1:6,byrow=TRUE,nrow=2)
2| > mat

3

4| -~"1~"1°"1[,1] [,2] [,3]
5| [1,] 1 2 3

6| [2,] 4 5 6

1

2| 2*mat

3

4 ~°1 [,11 [,2]1 [,3]
5] [1,] 2 4 6

6] [2,] 8 10 12

Introduction to R Programming Data Structure

1| 1/mat

2

3 ~~1C,11 [,2] [,31
4| [1,] 1.00 0.5 0.3333333
5/ [2,] 0.25 0.2 0.1666667
1| mat / 2

2

3 ~~1l,11 [,21 [,3]
4/ [1,] 0.5 1.0 1.5

5 B 2.0 2.5 3.0

1| mat = 2

2

3 ~~1[,11 [,2] [,3]

4| [1,] 1 4 9

5| [2,] 16 25 36

= = = QC 74/347

Introduction to R Programmi ta Structure

Comparison operators with matrices

We can similarly perform comparison operations across an entire matrix to
return a matrix of logicals:

mat > 3

~cI1l,11 [,21 [,3]
[1,] FALSE FALSE FALSE
[2,] TRUE TRUE TRUE

B WN

Introduction to R Programming Data Structure

Matrix Arithmetic with multiple matrices

We can use multiple matrices with arithmetic as well, for example:

1| mat+mat

2

3 ~°I1l,11 [,2]1 [,3]
4] [1,] 2 4 6

5] [2,] 8 10 12

1| mat/mat

2

3 ~~1[,11 [,2] [,3]
4| [1,]

5| [2,] 1 1 1

o = = 76/347

Introduction to R Programming Data Structure

ctIttIttIf,1l [h,210 [L3]
[1,1 1 4 27
[2,] 256 3125 46656

AW N

mat * mat

~°1[,1] [,2] [,3]
1,1 1 4 9
[2,1 16 25 36

O W N

=] 5 = £ DA 77/347

Introduction to R Programmi Data Structure

Matrix multiplication

A B\ (E F) (AE+BG AF+BH
X =

C D G H CE+DG CF+DH
Trick:
P=A(F-H) PR=(A+D)(E+H) AE+BG=PR+P-B+R
P,= (A+B)}H R =(B-D)(G+H) AF+BH =P,+P,
P,=(C+D)E P =(A-C)(E+F) CE+DG =P+ P,
P,= D-(G-E) CF+DH =P+ P-P,- P,

mat2 <- matrix(1:9, nrow=3)
mat2 % * % mat2

~~1C,11 [,2] [,3]
[1,] 30 66 102
[2,] 36 81 126
[3,1 42 96 150

~NOoO oA WN -

Introduction to R Programming Data Structure

Matrix Operations

Run the following code to create the stock.matrix from earlier

1| # Prices

2| goog <- c(450,451,452,445,468)

3| msft <- c(230,231,232,236,228)

4

5 # Put vecto into matrix

6| stocks <- c(goog,msft)

7| stock.matrix <- matrix(stocks,byrow=TRUE,nrow=2)
8

9| # Name matrix

10| days <- c('Mon','Tue','Wed','Thu','Fri')

11| st.names <- c('GO0OG','MSFT')
colnames (stock.matrix) <- days
13| rownames (stock.matrix) <- st.names

Lad
N

Display
stock.matrix

~7"I""IMon Tue Wed Thu Fri
GDOG 450 451 452 445 468
MSFT 230 231 232 236 228

DCTAWN -

= = = 79/347

Introduction to R Programmi ta Structure

We can perform functions across the columns and rows, such as colSum()
and rowSums():

colSums (stock.matrix)

Mon Tue Wed Thu Fri
680 682 684 681 696

rowSums (stock.matrix)

GO0OG MSFT
2266 1157

©CO~NOO A WN -

= = = D Al 80/347
Introduction to R Programming Data Structure

Binding columns and rows

we can use the cbind() to bind a new column, and rbind() to bind a new
row. For example, let’s bind a new row with Facebook stock:

FB <- c(111,112,113,120,145)
tech.stocks <- rbind(stock.matrix,FB)
tech.stocks

“"IMon Tue Wed Thu Fri
GOOG 450 451 452 445 468
MSFT 230 231 232 236 228
FB 111 112 113 120 145

WNOUTAWN R

Now let's add an average column to the matrix:

avg <- rowMeans(tech.stocks)
avg

GOOG MSFT FB
453.2 231.4 120.2

GTAWN -

tech.stocks <- cbind(tech.stocks,avg)
tech.stocks

“"IMon Tue Wed Thu Fri avg
GOOG 450 451 452 445 468 453.2
MSFT 230 231 232 236 228 231.4
FB 111 112 113 120 145 120.2

~NOoO oA WN -

Introduction to R Programming Data Structure

Matrix Selection and Indexing

Just like with vectors, we use the square bracket notation to select
elements from a matrix. Since we have two dimensions to work with, we'll
use a comma to separate our indexing for each dimension.

So the syntax is then: example.matrix[rows,columns]

Where the index notation (e.g. 1:5) is put in place of the rows or columns
. If either rows or columns is left blank, then we are selecting all the rows
and columns.

1| mat <- matrix(1:12,byrow=TRUE,nrow=3)
2| mat

3

4 ~~1[,11 (,2]1 [,3] [,4]

5| [1,] 1 2 3 4

6| [2,] 5 6 7 8

7| [3,] 9 10 11 12

Introduction to R Programming Data Structure

Grab first row
mat [1,]

[1] 1 2 3 4

#Grab first column
mat [,1]

O©OONOOTH WN -

[11 169

11| # Grab first 3 rows
12| mat [1:2,]

13

14| ~~1 [,11 0,21 [,3]1 [,4]
15| [1,] 1 2 3 4
16| [2,] 5 6 7 8

1| mat[1:2,1:2]

2

3 ~~1l,11 [,2]

41 01,1 1 2

5| [2,] 5 6

=] 5 = = £ DA 83/347

Introduction to R Programmi Data Structure

Factor and Categorical Matrices

Imagine we have the following vectors representing data from an animal
sanctuary for dogs ('d") and cats ('c’) where they each have a
corresponding id number in another vector.

[

animal <- c('d','c','d','c','c")
id <- c(1,2,3,4,5)

[N

We want to convert the animal vector into information that an algorithm
or equation can understand more easily. Meaning we want to begin to
check how many categories (factor levels) are in our character vector.

factor.ani <- factor(animal)

factor.ani
[11] d ¢ d c ¢

DW=

Introduction to R Programming Data Structure

If you wanted to assign an order while using the factor() function, you can
pass in the arguments ordered=True and the pass in the levels= and
pass in a vector in the order you want the levels to be in. So for example:

cold < med < hot

[

temps <- c('cold','med','cold','med','hot', 'hot','cold")
fact.temp <- factor(temps,ordered=TRUE,levels=c('cold', 'med', 'hot'))
fact.temp

w N

This information is useful when used along with the summary() function
which is an amazingly convenient function for quickly getting information
from a matrix or vector. For example:

summary (fact.temp)

1
2
3| cold med hot
413 2 2

Introduction to R Programming Data Structure

Dataframe Basics

Matrix inputs were limited because all the data inside of the matrix had to
be of the same data type (numerics, logicals, etc). With Dataframes we

will be able to organize and mix data types to create a very powerful data
structure tool.

To get a list of all available built-in dataframes, use data()

data() ‘

1

We can notice some dataframe are really big, we can use the head() and
tail() functions to view the first and last 6 rows respectively.

—

states <- state.x77
head(states)

N

Introduction to R Programming Data Structure

1 “7I""I""IPopulation Income Illiteracy Life Exp Murder HS Grad Frost Area
2| Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
3| Alaska 365 6315 1.5 69.31 11.3 66.7 152 566432
4| Arizona 2212 4530 1.8 70.55 7.8 58.1 15 113417
5| Arkansas 2110 3378 1.9 70.66 10.1 39.9 65 51945
6| California 21198 5114 1.1 71.71 10.3 62.6 20 156361
7| Colorado 2541 4884 0.7 72.06 6.8 63.9 166 103766

DataFrames - Overview of information

We can use the str() to get the structure of a dataframe, which gives
information on the structure of the dataframe and the data it contains,
such as variable names and data types. We can use summary() to get a
quick statistical summary of all the columns of a DataFrame.

summary (states)

str(states)

Introduction to R Programming Data Structure

Creating Data frames

We can create data frames using the data.frame() function and pass
vectors as arguments, which will then convert the vectors into columns of
the data frame. Let's see a simple example:

1

2| days <- c('mon','tue','wed', 'thu','fri')
3| temp <- c¢(22.2,21,23,24.3,25)

4| rain <- c(TRUE, TRUE, FALSE, FALSE, TRUE)
5

6

7| df <- data.frame(days,temp,rain)

8| daf

9
10 days temp rain
11{1 mon 22.2 TRUE
12| 2 tue 21.0 TRUE
13| 3 wed 23.0 FALSE
14| 4 thu 24.3 FALSE
15|56 fri 25.0 TRUE

Introduction to R Programming Data Structure

Overview of Data Frame Operations

1| # Creating Data Frames

2| empty <- data.frame() # empty data frame

3] c1 <- 1:10 # vector of integers

4| c2 <- letters[1:10] # vector of strings

5| df <- data.frame(col.name.l=cl,col.name.2=c2)
6| df

7

8 col.name.1l col.name.2

9|1 1 a

10| 2 2 b

11| 3 3 c

12| 4 4 d

13| 5 5 e

14| 6 6 f

15| 7 7 g

16| 8 8 h

17| 9 9 i

18| 10 10 j

1| #Importing and Exporting Data

2| d2 <- read.csv('some.file.name.csv')

3

4| # For Excel Files

5 # Load the readxl package

6| library (readxl)

7| # Call info from the sheets using read.excel
8| df <- read_excel('Sample-Sales-Data.xlsx',sheet='Sheetl')
9

10| # Output to csv

11| write.csv(df, file='some.file.csv')

o = = DA g9/347

Introduction to R Programmir Data Structure

#Getting Information about Data Frame
nrow(df)

10

ncol(df)

2

GTAWN -

Column Names
colnames (df)
"col.name.1" "col.name.2"

Row names (may just return index)
rownames (df)
Wiw o mow wgw wgw wgw wgn 7w wgw wgn wqgw

NOoOOA WN =

#Referencing Cells

vec <- df[[5, 2]] # get cell by [[row,coll] num

newdf <- df[1:5, 1:2] # get multiplt cells in new df

df [[2, 'col.name.1']] <- 99999 # reassign a single cell

B WN =

#Referencing Rows
rowdf <- df[1,]

to get a row as a vector, use following
vrow <- as.numeric(as.vector(df[1,]))

GAWN -

o = = £ DA 90/347

Introduction to R Programmir Data Structure

1| #Referencing Columns

2| cars <- mtcars

3| colvl <- cars$mpg

4| colv2 <- cars[, 'mpg']

5| colv3<- cars[, 1]

6| colvd <- cars[['mpg']]

1| #Adding Rows

2| df2 <- data.frame(col.name.1=2000,col.name.2="'new')
3| af2

4

5| # use rbind to bind a new row!

6| dfnew <- rbind(df,df2)

1| df$newcol <- rep(NA, nrow(df)) # A column

2| af

3

4| df[, 'copy.of.col2'] <- df$col.name.2 # copy a col
5| df

6

7| # Can also use equations!

8| df[['coll.times.2']] <- df$col.name.l * 2

9| df

1| # Rename second column

2| colnames (df) [2] <- 'SECOND COLUMN NEW NAME'

3| daf

4

5| # Rename all at once with a vector

6| colnames(df) <- c('col.name.1', 'col.name.2', 'newcol', 'copy.of.col2' ,'coll.times.2')
7| df

o = = DA 91/347

Introduction to R Programmir Data Structure

1| #selecting Multiple R

2| first.ten.rows <- df[0,] # Same as head(df, 10)

3| first.ten.rows

1| everything.but.row.two <- df[-2,]

2| everything.but.row.two

1| # Conditional Selection

2| subl <- df[(df$col.name.1 > 8 & df$coll.times.2 > 10),]
3| subl

4

5| sub2 <- subset(df, col.name.l > 8 & coll.times.2 > 10)
6| sub2

1| #Selecting Multiple Colum

2(df[, c(1, 2, 3)] #Grab co 123

3

4| df[, c('col.name.1', 'coll.times.2')] # by name

5

6| df[, -1]1 # keep all but first column

7

8| df[, -c(1, 3)] # drop cols 1 and 3

Note: we use [[]] to select a single element by using integer or character
indices.

= = = 92/347

Introduction to R Programmir ta Structure

Dealing with Missing Data

1| any(is.na(df)) # detect anywhere in df

2

3| any(is.na(df$col.name.1)) # anywhere in col
4

5| # delete selected missing data rows

6| df <- df[!is.na(df$col),]

7

8| # replace NAs with something else

9| df [is.na(df)] <- 0 # works on whole df

10

11| df$col[is.na(df$col)] <- 999 # For a selected column

o = = DA 93/347

Introduction to R Programmir Data Structure

Data Frame Selection and Indexing

~TI

~~Idays <- c('mon','tue','wed','thu','fri')
“"Itemp <- c(22.2,21,23,24.3,25)

“~Irain <- c(TRUE, TRUE, FALSE, FALSE, TRUE)
~°I

~°I

~"Idf <- data.frame(days,temp,rain)

~TIdf

~°I

10| ~"I""Idays temp rain

11| °"I1 mon 22.2 TRUE

©O~NOU A WN R

12| °"I2 tue 21.0 TRUE
13| ""I3 wed 23.0 FALSE
14| “~"I4 thu 24.3 FALSE
15| °"15 fri 25.0 TRUE

16| ~°I

We can use the same bracket notation we used for matrices:
df[rows,columns]

1| ~"1
2| ~"1df[1,]
31771
4| -1
5| ~"Idf[,1]
6| "I
7| -1
8| ~~1df[5,]
9| ~~1

Introduction to R Programming Data Structure

Selecting using column names
we can use column names to select data for the columns instead of having
to remember numbers. So for example:

df [, 'rain']

Gl W

df [1:5,c('days"', 'temp')]

If you want all the values of a particular column you can use the dollar sign
directly after the dataframe as follows: df.name$column.name

1| df$rain
df $days

N

Introduction to R Programming Data Structure

You can also use bracket notation to return a data frame format of the
same information:

1| df['rain']
2| df ['days']

Filtering with a subset condition We can use the subset() function to
grab a subset of values from our data frame based off some condition. So
for example, imagin we wanted to grab the days where it rained
(rain=True), we can use the subset() function as follows:

subset (df ,subset=rain==TRUE)

~7I days temp rain
1 mon 22.2 TRUE
2 tue 21.0 TRUE
5 fri 25.0 TRUE

OO WN =

Introduction to R Programming Data Structure

Odering a Data Fram

We can sort the order of our data frame by using the order function. You
pass in the column you want to sort by into the order() function, then you
use that vector to select from the dataframe. Let's see an example of
sorting by the temperature:

sorted.temp <- order(df['temp'])
df [sorted.temp,]

- days temp rain
tue 21.0 TRUE
mon 22.
wed 23.
thu 24.
fri 25.

GA W N

2
0
3
0

We can pass a negative sign to do descending order.

1| desc.temp <- order(-df['temp'l])
2| df [desc.temp,]

3

4| days temp rain

5|6 fri 25.0 TRUE

6|4 thu 24.3 FALSE

7|3 wed 23.0 FALSE

8|1 mon 22.2 TRUE

9|2 tue 21.0 TRUE

Introduction to R Programming Data Structure

We could have also used the other column selection methods we learned:
1| sort.temp <- order (df$temp)
2| df [sort.temp,]

o = = £ £ 9DAC 9g/347
Introduction to R Programming Data Structure

R Lists Basics

Lists will allow us to store a variety of data structures under a single
variable. This means we could store a vecor,matrix, data frame, etc. under
a single list. For example:

v <- ¢(1,2,3,4,5)

m <- matrix(1:10,nrow=2)

WNOU AW

df <- women

Using list()
We can use the list() to combine all the data structures:

1| 1i <- list(v,m,df)

2| 1i

3

41 [[11]

5/ [11 1 2345

6

7| [[211]

8| [,11 [,21 [,3] [,4] [,5]

9| [1,] 1 3 5 7 9
10| [2,] 2 4 6 8 10

Introduction to R Programming Data Structure

-
CWOONOU A WNF

11
12
13
14
15
16
17

HOWOWONOOAWN-

-

Introduction to R Programming Data Structure

[[3]1]

height weight

1 58 115
2 59 117
3 60 120
4 61 123
5 62 126
6 63 129
7 64 132
8 65 135
9 66 139
10 67 142
11 68 146
12 69 150
13 70 154
14 71 159
15 72 164

The list() assigned numbers to each of the objects in the list, but we can

also assign names in the following manner:

1li <- list(sample_vec = v,sample_mat = m, sample_df = df)
!
1i
$sample_vec
[11] 1 2345
$sample_mat
[,11 [,2]1 [,3]1 [,4] [,s]
[1,]1 1 3 5 7 9
[2,]1 2 4 6 8 10

1| $sample_df
2| ~~I~"Iheight weight
311 58 115
412 59 117
53 60 120
6|4 61 123
7|5 62 126
8|6 63 129
9|7 64 132
10| 8 65 135
11| 9 66 139
12| 10 67 142
13] 11 68 146
14] 12 69 150
15| 13 70 154
16| 14 71 159
17| 15 72 164

o = = £ DA 101/347

Introduction to R Programmi Data Structure

Selecting objects from a list
You can use bracket notation to show objects in a list, and double brackets
to actually grab the objects form the list, for example:

1i[1]

$sample_vec
[1] 12345

1li['sample_vec']

©ONOO A WN -

-
o

$sample_vec
111 [1] 1 23 4 5
12
13 !

14| class(li['sample_vec'])

16| [1] "list"

1i[['sample_vec']]

[11] 1 23 45

li$sample_vec

©ONOO S WN -

[1] 1 23 45

Introduction to R Programming Data Structure

Combining lists
Lists can hold other lists! You can also combine lists using the combine
function c():

double_list <- c(1i,1i)
str(double_list)

List of 6

$ sample_vec: num [1:5] 1 2 3 4 5

$ sample_mat: int [1:2, 1:5] 1 2 3 45 6 7 8 9 10

$ sample_df :'data.frame':""I15 obs. of 2 variables:

..$ height: num [1:15] 58 59 60 61 62 63 64 65 66 67 ...

..$ weight: num [1:15] 115 117 120 123 126 129 132 135 139 142
10| $ sample_vec: num [1:5] 1 2 3 4 5

11| $ sample_mat: int [1:2, 1:5] 1 2 3 45 6 7 8 9 10

12| $ sample_df :'data.frame':""I15 obs. of 2 variables:

13| ..$ height: num [1:15] 58 59 60 61 62 63 64 65 66 67 ..

14| ..$ weight: num [1:15] 115 117 120 123 126 129 132 135 139 142

©0O~NOO A WN -

Introduction to R Programmi ta Structu

Control Structure

= = - £ DA 104/347
Introduction to R Programming Control Structure

Logical Operators

Logical Operators will allow us to combine multiple comparison operators.
The logical operators we will learn about are:

e AND - &
e OR-|
e NOT - !

N

x <- 10

Now we want to know if 10 is less than 20 AND greater than 5:

N =

x < 20

w

TRUE

Introduction to R Programming Control Structure

x > 5
TRUE

x <20 & x>5
TRUE

GAWN -

We can also add parenthesis for readability and to make sure the order of
comparisons is what we expect:

(x < 20) & (x>5)
TRUE

(x < 20) & (x>5) & (x == 10)
TRUE

G W

o = = 106/347

Introduction to R Programming Control Structure

NOT!

You can think about NOT as reversing any logical value in front of it,
basically asking, “Is this NOT true?” For example:

(10==1)
FALSE

1(10==1)
TRUE

We can stack them (pretty uncommon, but possible)
11 (10==1)
FALSE

©CO~NOO A WN -

Introduction to R Programming Control Structure

Use Case Example

1| df <- mtcars
2| df [df ['mpg'] >= 20,] # Notice the use of indexing with the comma
3

subset (df ,mpg>=20) # Could also use subset

Let's combine filters with logical operators! Let's grab rows with cars of at
least 20mpg and over 100 hp.

1|df[(df['mpg'] >= 20) & (df['hp'] > 100),]

= = - DA 108/347
Introduction to R Programming Control Structure

Logical Operators with Vectors

We have two options when use logical operators, a comparison of the
entire vectors element by element, or just a comparison of the first
elements in the vectors, to make sure the output is a single Logical.

tf <- c(TRUE,FALSE)
tt <- c(TRUE,TRUE)
ft <- c(FALSE, TRUE)
tt & tf

[1] TRUE FALSE

tt | tf
[1] TRUE TRUE

W~NOU A WN

To compare first elements use && or ||

ft &% tt
[1] FALSE

tt || tf
TRUE

tt || ft
TRUE

tt && tf
TRUE

HO WO~ HWNH

-

Introduction to R Programming Control Structure

if, else, else if Statements

Our first step in this learning journey for programming will be simple if,
else, and else if statements.

Here is the syntax for an if statement in R:

—

if (condition){

3}

We say if some condition is true then execute the code inside of the curly
brackets.

For example, let's say we have two variables, hot and temp. Imagine that
hot starts off as FALSE and temp is some number in degrees. If the temp
is greater than 80 than we want to assign hot=TRUE.

Introduction to R Programming Control Structure

Let's see this in action

hot <- FALSE
temp <- 60

if (temp > 80){
~~Ihot <- TRUE
}

hot

[1] FALSE

NOoO O A WN -

Reset temp
temp <- 100

if (temp > 80){
hot <- TRUE

}

hot
[1] TRUE

CQOWONOOHWN -

-

o = = 111/347

Introduction to R Programmi Control Structure

else if

What if we wanted more options to print out, rather than just two, the if
and the else? This is where we can use the else if statement to add
multiple condition checks, using else at the end to execute code if none of
our conditions match up with and if or else if.

temp <- 30

if (temp > 80){

print ("Hot outside!")

} else if(temp<80 & temp>50){
print('Nice outside!')

} else if(temp <50 & temp > 32){
print("Its cooler outside!")

} else{

print("Its really cold outside!")
11] ¥

12
13| [1] "Its really cold outside!"

©OW~NOU A WN R

-
o

Introduction to R Programming Control Structure

temp <- 75

if (temp > 80){

print ("Hot outside!")

} else if(temp<80 & temp>50){
print('Nice outside!')

} else if(temp <50 & temp > 32){
print("Its cooler outside!")

} elseq{

10| print("Its really cold outside!")
11|}

©0O~NOO A WN -

13| [1] "Nice outside!"

o = = £ DA 113/347

Introduction to R Programmi Control Structure

Final Example

Let's see a final more elaborate example of if,else, and else if :
1| # Items sold that day
2| ham <- 10
3| cheese <- 10
4
5| # Report to HQ
6| report <- 'blank'
7| if (ham >= 10 & cheese >= 10){
8| ""Ireport <- "Strong sales of both items"
9| Yelse if(ham == 0 & cheese == 0){
10| "~ Ireport <- "Nothing sold!"
11| Yelse{
12| ~"Ireport <- 'We had some sales'
13| }
14| print (report)
15
16| [1] "Strong sales of both items"

[} = = 114/347

Introduction to R Programmi Control Structure

for loops

A for loop allows us to iterate over an object (such as a vector) and we
can then perform and execute blocks of codes for every loop we go
through. The syntax for a for loop is:

N =

for (temporary_variable in object){

31}

Introduction to R Programming Control Structure

For loop over a vector

We can think of looping through a vector in two different ways, the first
way would be to create a temporary variable with the use of the in
keyword:

vec <- c(1,2,3,4,5)
for (temp_var in vec){
"~ Iprint(temp_var)

[11
[11
[1]
[1]
[1]

©O~NOU A WN R

QoW N e

The other way would be to loop a numbered amount of times and then
use indexing to continually grab from the vector:

for (i in 1:length(vec)){
print(vec[il)

}
[1]
[1]
[11
[1]
[11

WNOUA W
SR

Introduction to R Programming Control Structure

For loop over a list We can do the same thing with a list:

1i <- 1ist(1,2,3,4,5)
for (temp_var in 1i){
“~Iprint(temp_var)

}

B WN =

un

for (i in 1:length(1li)){
~~Iprint(1i[[i]]) !
3|3

N

For loop with a matrix
We can similarly loop through each individual element in a matrix:

mat <- matrix(1:10,nrow=5)
for (num in mat){

print (num)

}
[1]
[1]
[1]
[1]
[1]
[1]
[1]
12| [1]
13| [1]
14| [1]

©OONODO A WN -

Ly
o

-
-
B ©ONOORWwN R

o

Introduction to R Programming Control Structure

Nested for loops

We can nest for loops inside one another,however be careful when doing
this, as every additional for loop nested inside another may cause a
significant amount of additional time for your code to finish executing. For
example:

1| for (row in 1:nrow(mat)){

2| ""Ifor (col in 1:ncol(mat)){

3| ""I~"Iprint(paste('The element at row:',row,'and col:',col,'is',mat[row,coll))
4| ~"1}

5%}

6| [1] "The element at row: 1 and col: 1 is 1"
7| [1] "The element at row: 1 and col: 2 is 6"
8| [1] "The element at row: 2 and col: 1 is 2"
9| [1] "The element at row: 2 and col: 2 is 7"
10| [1] "The element at row: 3 and col: 1 is 3"
11| [1] "The element at row: 3 and col: 2 is 8"
12

13| [1] "The element at row: 5 and col: 2 is 10"

Introduction to R Programming Control Structure

while loops

while loops are a while to have your program continuously run some block
of code until a condition is met (made TRUE). The syntax is:

1| while (condition){

2

3

41}

1| °7Ix <- 0

2| °°1

3| ""Iwhile(x < 10){

41 °"1

5| ~"Icat('x is currently: ',x)

6| ""Iprint(' x is still less than 10, adding 1 to x')

7| °°1

8| "I

9] ""Ix <- x+1

10| =1}

11| ""Ix is currently: O[1] " x is still less than 10, adding 1 to x"
12| ""Ix is currently: 1[1] " x is still less than 10, adding 1 to x"
13| ""Ix is currently: 2[1] " x is still less than 10, adding 1 to x"
14| ~"I....

15| ~"Ix is currently: 9[1] " x is still less than 10, adding 1 to x"
16| ~°I

Introduction to R Programming Control Structure

x <- 0

while(x < 10){

“"Icat('x is currently: ',x)

~~Iprint(' x is still less than 10, adding 1 to x')
“~I# add one to x

TTIx <- x+1

SoIif(x==10){

~~I""Iprint("x is equal to 10! Terminating loop")
~~13

}

CWOONOUHWN -

-

o = = £ DA 120/347

Introduction to R Programmir Control Structure

break
You can use break to break out of a loop.

x <= 0

while(x < 5){

“~Icat('x is :',x,sep="")

~~Iprint(' x is still less than 5, adding 1 to x')
add one to x

“TIx <- x+1

“TIif (x==5){

“"I""Iprint("x is equal to 5!")

~"I""Iprint("I will also print, woohoo!")

10| ~~1}

©OOWNOO A WN -

is :0[1] " is still less than 5, adding
is :1[1] " is still less than 5, adding

X 5 to
x 5
is :2[1] " x is still less than 5, adding
x 5
5

to
to
to
to

-
w
R I

is :3[1] " is still less than 5, adding
16 x is :4[1] " x is still less than 5, adding
17| [1] "x is equal to 5!"

18| [1] "I will also print, woohoo!"

R
MoM M M M

[} = = 121/347

Introduction to R Programmir Control Structure

x <- 0
“~Iwhile(x < 5){
“"I""Icat('x is :',x,sep="")

~"I""Iprint(' x is less than 5, adding 1 to x')
“"I""I# add one to x

TTITTIx <- x+l

STITTICTIAE (x==5)1

~~ITTITTIprint('x is equal to 5!")

©O~NOO A WN -

“TIT"I""Ibreak
10| ~"I""I""Iprint("I will also print, woohoo!")
11| ~"1°"I}
12| =1}
13| x is :0[1] " x is less than 5, adding 1 to x"
14| x is :1[1] " x is less than 5, adding 1 to x"
15| x is :2[1] " x is less than 5, adding 1 to x"
16| x is :3[1] " x is less than 5, adding 1 to x"
17| x is :4[1] " x is less than 5, adding 1 to x"
18| [1] "x is equal to 5!"
19| ~~1

o = = £ DA 122/347

Introduction to R Programmir Control Structure

Function

= = = = DAt 123/347
Introduction to R Programming Function

Function Structure

The syntax for writing your own function:

1| name_of _function <- function(argl, arg2, ...){
2| ~"I#Code that gets executed when function is called
3|}
Example
1| hello <- function(){
2| ~"Iprint('hello!")
31}
4| hello)
5| [1] "hello!"

= = - 124/347
Introduction to R Programming Function

1. The name. A user can run

3. The arguments. A user can supply values for 4. The default values.
the function by typing the these variables, which appear in the body of the Optional values that R can use
name followed by function. for the arguments if a user
parentheses, £.g., roll2(). does not supply a value.
roll2 <- function(bones = 1:6) {
1. The body. R will run dice <- sample(bones, size = 2, 5. The last line of code.
this code whenever a replace = TRUE) The function will return the
user calls the function. sum(dice) result of the last line.
}

o = = DA 125/347
Introduction to R Programming Function

helloyou <- function(name){
““Iprint(paste('hello ',name))
}

helloyou('Sammy')

[1] "hello Sammy"

AW N

add_num <- function(numl,num2){
~~Iprint (numil+num2)

add_num(5,10)
[1] 15

O W N

o = = £ DA 126/347

Introduction to R Programmir Function

Default Values

We have had to define every single argument in the function when using it,
but we can also have default values by using an equals sign, for example:

hello_someone <- function(name='Frankie'){
“~Iprint(paste('Hello ',name))

hello_someone ()
[1] "Hello Frankie"

OO ~NOU D WNH

hello_someone ('Sammy')
[1] "Hello Sammy"

Ly

Introduction to R Programming Function

Returning Values

If we wanted to return the results so that we could assign them to a
variable, we can use the return keyword for this task in the following
manner:

formal <- function(name='Sam',title='Sir'){
“~Ireturn(paste(title,' ',name))

¥

var <- formal('Marie Curie','Ms.')

var

[1] "Ms. Marie Curie"

DO WN -

Introduction to R Programming Function

Scope

@ Scope is the term we use to describe how objects and variable get
defined within R

o if a variable is defined only inside a function than its scope is limited
to that function

times5 <- function(input) {
““Iresult <- input ~ 2
“~Ireturn(result)

}

result

Error: object 'result' not found
input

Error: object 'input' not found

WNOU AW

These error indicate that these variables are only defined inside the scope
of the function.

Introduction to R Programming Function

v <- "I'm global v"
stuff <- "I'm global stuff"

fun <- function(stuff){

~~Iprint(v)

“~Istuff <- 'Reassign stuff inside func'
~~Iprint(stuff)

+

O©ONOOH WN -

-
o

print(v) #print v

11| print (stuff) #print stuff

12| fun(stuff) # pass stuff to function

13| # reassignment only happens in scope of function
14| print (stuff)

15
16| [1] "I'm global v"

17| [1] "I'm global stuff"

18| [1] "I'm global v"

19| [1] "Reassign stuff inside func"
20| [1] "I'm global stuff"

double <- function(a) {
a <- 2%*a

a

}

var <- b

double (var)

var

[1] 10

[1] 5

©O~NOO A WN -

o = = £ DA 130/347

Introduction to R Programmir Function

Statistics

= = = = DA 131/347
Introduction to R Programming Statistics

Common Statistics Methods

o Correlation
@ Linear Regression
@ Comparing 2 means

e ANOVA

= = - = DA 132/347
Introduction to R Programming Statistics

R Commander

@ The R Commander is a graphical user interface (GUI) to the free
@ The Rcmdr package, which is freely available on CRAN
@ Support Statistics via GUI

1| install.packages("Rcmdr")
library (Rcmdr)
~TI

N

Installation notes: https://socialsciences.mcmaster.ca/jfox/
Misc/Rcmdr/installation-notes.html

Introduction to R Programming Statistics

https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html
https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html

e0e N RC
File Edit Data Statistics Graphs Models Distributions Tools Help

(R Dataset | <Noactivedataset> | | /Editdataset | [gViewdataset | Model: x <no active model>

R Script R Markdown

Al >

output g Submit

| D
Messages

[1] NOTE: R Commander Version 2.4-1: Men Jan 22 12:50:27 2018 g

o DY

= = - = DA 134/347

Introduction to R Programmir Statistics

eoce %/ R Commander
File Edit Data Graphs Models Distributions Tools Help

Summaries
.@ Data set: .

RScript R Mark Me3ns
Proportions
Variances

dit data set H [view data set Model: X <No active model>
tables

5¢3
Dataset <- .
read. table(* Nonparametric tests

header=TRUE Dimensional analysis

Fit models
summary (Datase

ata/Dropbox/PSU/20817/courses/statistics/R-book/Data files,
NA", dec=".", strip.white=TRUE)

>
r
-
>
r
-
>
r

Kl | | D]

Output
[+ header=TRUE, sep="", NA", dec=".", strip.white=TRUE) [4]
> summary(Dataset)
beerpos beerneg beerneut winepos wineneg
Min. : 1.80 Min. :-19.80 Min. Min. :11.00 Mi =

1st Qu.:12.75 1st Qu.: -9.58 1st Qu.:
Median :18.50 Median : ©.00 Median
Mean :21.85 Mean @ 4. B
3rd Qu.:31.00 3rd Qu.: 20.25 3rd Qu.:

1st Qu.:22.25
Median :25.00
Mean :25.35
3rd Qu.:29.25

Max. :43.00 Max. : 30.00 Max. Max. :38.00
wineneut waterpos waterneg waterneu participant

Min. 9.80 Min. : 6.0 Min. 20.0 :-13.80 Pl t1

1st Qu.: 6.00 1st Qu.:12.0 1st Qu.:-14.5 0.80 P10 1

Median :12.50 Median :17.0 Median :-10.0 2.50 P11 1

Mean :11.65 HMean 4 Mean 9.2 2.35 P12 : 1

3rd Qu.:16.50 3rd Qu.:21.0 3rd Qu.: -4.0 8.0 P13 : 1

Max. :21.80 Hax. .0 Max 5.8 12.00 P14 : 1
(Other):14

Messages

Remdr Version 2.4-1 2

[4] NOTE: The dataset Dataset has 20 rows and 10 columns.

Introduction to R Programm

| R Commander

File Edit Data Statistics Graphs Models Distributions Tools Help

R Dataset Dataset | | Editdataset || (5 Viewdataset | Modeli z <N active model>

RScript R Markdown

header=TRUE, sep="", na.strings="NA", dec=

, strip.white=TRUE)

summary (Dataset)

with(Dataset, Dotplot(beerneg, bin-FALSE))

with(Dataset, Dotplot(beerneg, bin=FALSE))

scatterplot{waterneg~beerneg, reg.line=FALSE, smooth=FALSE, spread=FALSE,
boxplots=FALSE, span=0.5, ellipse=FALSE, levels=c(.9), data=Dataset)

scatterplot(waterneg-beerneg, reg.line-FALSE, smooth-FALSE, spread-FALSE,
boxplots=FALSE, span=0.5, ellipse=FALSE, levels=c(.5, .9), data=Dataset)

> with(Dataset, Dotplot(beerneg, bin=FALSE))
> with(Dataset, Dotplot(beerneg, bin=FALSE)}

> scatterplot(waterneg-beerneg, reg.line=FALSE, smooth=FALSE, spread=FALSE,
'+ boxplots=FALSE, span=0.5, ellipse=FALSE, levels=c(.5, .9), data=Dataset)

= scatterplot(waterneg-beerneg, reg.line=FALSE, smooth=FALSE, spread=FALSE,
'+ boxplots-FALSE, span-6.5, ellipse-FALSE, levels-c(.5, .9), data-Dataset)

Messages

Output
wineneut waterpos waterneg waterneu participant
Min. : 0.00 Min. : 6.0 Min. :-20.0 Mi 13.00 Pl 11
1st Qu.: 1st Qu.: .5 P10 : 1
Median : Median : .0 P11 1
Hean Mean : .2 P12 1
3rd Qu 3rd Qu.: .0 P13 1
Max. Max. .0 P14 1
(Dthsr) 14

£l

Remdr Version 2.4-1
[4] NOTE: The dataset Dataset has 20 rows and 10 columns.

waterneg

-5

-10

-15

-20

[eJe]

Correlation

@ It is a way of measuring the extent to which two variables are relate
@ |t measures the pattern of responses across variables

@ Correlation and Causality
» In any correlation, causality between two variables cannot be assumed
because there may be other measured or unmeasured variables

affecting the results
» Correlation coefficients say nothing about which variable causes the

other to change

Introduction to R Programming Statistics

Correlation (cont.)

To compute basic correlation coefficients there are three main functions
that can be used:
e cor()

e cor.test()

e rcorr()

Introduction to R Programming Statistics

Things to Know about the Correlation

o It varies between -1 and +1 (0 = no relationship)

o It is an effect size
» +.1 or —.1 = small effect

\4

+.3 or —.3 = medium effect

v

+.5 or —.5 = large effect

Introduction to R Programming Statistics

Pearson correlations

cor (examData, use = "complete.obs", method = "pearson")

rcorr (examData, type = "pearson')

Gl W

= "pearson")

cor.test(examData$Exam, examData$Anxiety, method

= = - = DA 140/347
Introduction to R Programmir Statistics

Regression

@ A way of predicting the value of one variable from another
» It is a hypothetical model of the relationship between two variables
» The model used is a linear one

~

The Regression Equation
¥ =bX + a J

Y is the predicated value of the Y variable
b is the unstandardized regression coefficient, or the slope
a is intercept (i.e., the point where the regression line intercepts the Y

axis)

Introduction to R Programming Statistics

Regression with R
The basic syntax for a regression analysis in R is Im(Y model)

Syntax Model Comments
Y~A Y=B,+pA Straight-line with an implicit y-
intercept
Y~-1tA Y=03A Straight-line with no y-intercept;
that is, a fit forced through (0,0)
Y ~ A+1(A2) Y =B+ BiA + B, A2 Polynomial model; note that the

identity function I() allows terms
in the model to include normal
mathematical symbols.

Y~A+B Y =B,+B;A+B,B A first-order model in A and B
without interaction terms.

Y~AB Y =B,+BAB A model containing only first-order
interactions between A and B.

Y ~A*B Y =B, B;A+B,B +B;AB | A full first-order model with a term;
an equivalentcodeis Y ~A +B +
A:B.

Y~A+B+0)"2 | Y=B,+B;A+B,B+B;C+ | Amodel including all first-order

B4AB + BsAC + B,AC effects and interactions up to the nth

order, where n is given by ()*n.
An equivalent code in this case is
Y ~ A*B*C — A:B:C.

Introduction to R Programming Statistics

Regression with R (cont.)
=12345

=2,4,35,6

fit < — Im(Y ~ X)
summary(fit)

vV vV X <

Call:
Im{formula = simplelinear$Y ~ simplelinear$X, data = simplelinear)

Residuals:
1 2 3 4 5
-6.2 -1, 9.9 9.1 0.2

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) -0. 6008 1.8677 -8.562 ©.6134
simplelinearsX ©.9000 9.2517 3.576 0.8374 *

Signif. codes: @ "***' @©.0@1 "**' 0.01 '*' @.05 '." 0.1 ' ' 1
Residual standard error: @.7958 on 3 degrees of freedom

Multiple R-squared: 0.81, Adjusted R-sguared: ©.7467
F-statistic: 12.79 on 1 and 3 DF, p-value: @.83739

Introduction to R Programming Statistics

Multiple Regression

When we add the second predictor variable to the model, we get the
following regression equation:

Y=a + b1 X1 + b X
where
Y is the predicted value of the dependent variable,
a is the intercept,
X1 is the value of the first predictor variable, and
Xy is the value of the second predictor variable

Introduction to R Programming Statistics

Example

N
XKeggmouumemamnnooosrnnesm

H e}
KNNHAANSINNNOTMNOOOOHO T

o 0
HaAdANErNOPOOMNEOHOVOOH

7

34
3,

145

Statistics

Introduction to R Programmi

Example (cont.

2 4 6 & 10
= = == . =
> ° -
- o L -
P o
5 o oo s o o of «w
Y . -
° = -
oo °
- - o
e o s o
= Gl =
- - - -
- o -
o o
w o o x1 o o o
oo e o
- oo o o o o @
e s e
A °
o s o
= 5 .
- - L -
o o - - L~
oo - oo ° X2 .
- ° - o o .
o o o o o ° .
o o o o o oo .
2 4 © 10 3 4 5 6 7T B8 9
= = - = DA™ 146/347

Introduction to R Programming Statistics

Multiregression with R

—

> results = Im(Y ~ X1 + X2)
> summary (results)

N

Call:
Im(formula = multipleRegression$Y ~ multipleRegression$Xl + multipleRegression$x2,
data = multipleRegression)

Residuals:
Min 10 Median 3Q Max
-2.8406 -1.4416 -0.9952 1.2632 4.4350

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 0.1026 1.6602 0.062 0.95146
multipleRegression$Xl 0.6771 0.1953 3.467 0.00295 **
multipleRegression$X2 0.3934 0.2949 1.334 0.19971

Signif. codes: @ ‘***’ 9,001 “**’ 9.01 ‘*’ 9.05 ‘.’ 0.1 * ' 1
Residual standard error: 2.191 on 17 degrees of freedom

Multiple R-squared: 0.5054, Adjusted R-squared: @.4472
F-statistic: 8.686 on 2 and 17 DF, p-value: 0.002519

Introduction to R Programming Statistics

Multiregression with R (cont.)

From the output, you see that the prediction equation is:

¥ =0.1026 + 0.6771X; + 0.3934X,

o = = £ DA 148/347
Introduction to R Programming Statistics

Multiregression with R (cont.)

How?

From the output, you see that the prediction equation is:

¥ =0.1026 + 0.6771X; + 0.3934X,

= = - = DA 148/347
Introduction to R Programming Statistics

Comparing 2 means (t-test)

@ Two samples of data are collected and the sample means calculated.
These means might differ by either a little or a lot.

@ We compare the difference between the sample means that we
collected to the difference between the sample means that we would
expect to obtain if there were no effect (i.e. if the null hypothesis
were true)

Introduction to R Programming Statistics

The Independent t-test

To do a t-test we use the function t.test()

If you have the data for different groups stored in a single column:

=

newModel<-t.test (outcome ~ predictor, data = dataFrame, paired = FALSE/TRUE)

3| ind.t.test<-t.test (Anxiety ~ Group, data = spiderLong)

If you have the data for different groups stored in two columns:

1| newModel<-t.test(scores group 1, scores group 2, paired= FALSE/TRUE)

3| ind.t.test<-t.test(spiderWide$real, spiderWide$picture)

Introduction to R Programming Statistics

The dependent t-test

To do a dependent t-test we again use the function t.test() but this time
include the option paired = TRUE. If we have scores from different
groups stored in different columns:

1‘dep.t.test<ft.test(spiderWide$rea1, spiderWide$picture, paired = TRUE) ‘

If we had our data stored in long format so that our group scores are in a
single column and group membership is expressed in a second column:

1‘dep.t.test<ft.test(Anxiety ~ Group, data = spiderLong, paired = TRUE) ‘

Introduction to R Programming Statistics

Analysis of Variance (ANOVA)

@ Compares several means

@ Can be used when you have manipulated more than one independent
variable

@ It is an extension of regression (the general linear model)

Introduction to R Programming Statistics

One-Way ANOVA

Using Im():

1| viagraModel<-1m(libido~dose, data = viagraData)
Using aov():

1| viagraModel<-aov(libido ~ dose, data = viagraData)

2| summary (viagraModel)

= = - 2ANS 153/347
Introduction to R Programmi Statistics

Post Hoc Tests

@ Bonferroni
e BH

o Tukey
1

w N

summary (postHocs)

postHocs<-glht (viagraModel, linfct = mcp(dose
confint (postHocs)

"Tukey"))

= = - 2ANS 154/347
Introduction to R Programming Statistics

2-Way ANOVA

@ Two-way = 2 Independent variables
@ Three-way = 3 Independent variables

@ Several independent variables is known as factorial design

Introduction to R Programming Statistics

Factorial ANOVA Model

1

1

gogglesModel<-aov(attractiveness ~ alcohol*gender, data

gogglesData)

= = = E DAC 156/347
Introduction to R Programmir Statistics

gogglesModel<-aov(attractiveness ~ gender + alcohol + gender:alcohol, data = gogglesData)

Data Visualization

= = = = DA 157/347
Introduction to R Programming Data Visualization

Grammar of Graphics and ggplot2

One of the most common and popular libraries for data visualization in R,
ggplot2

ggplot2 has several advantages:

@ Plot specification at a high level of abstraction

@ Very flexible

@ Theme system for polishing plot appearance

@ Mature and complete graphics system

@ Many users, active mailing list

@ Lot's of online help available (StackOverflow, etc...)
What ggplot2 not ideal for:

@ Interactive graphics

@ Graph Theory Plots (Graph Nodes)

@ 3-D Graphics

Introduction to R Programming Data Visualization

Grammar of Graphics

@ ggplot2 is based on the grammar of graphics

@ the idea that you can build every graph from the same few
components: a data set, a set of geoms—visual marks that represent
data points, and a coordinate system.

@ To display data values, map variables in the data set to aesthetic
properties of the geom like size, color, and x and y locations

Introduction to R Programming Data Visualization

Layers for building Visualizations

data visualization in layers:

Coordinates
Statistics

ggplot2 is based off the grammar of graphics, which sets a paradigm for
Facets

Geometries

Aesthetics

= = = = DA 160/347
Introduction to R Programming Data Visualization

Geoms in ggplot2

Name Description

abline Line, specified by slope and intercept
area Area plots

bar Bars, rectangles with bases on y-axis
blank Blank, draws nothing

boxplot Box-and-whisker plot

contour Display contours of a 3d surface in 2d
crosshar Hollow bar with middle indicated by horizontal line
density Display a smooth density estimate
density 2d Contours from a 2d density estimate
errorbar Error bars

histogram Histogram

hline Line, horizontal

interval Base for all interval (range) geoms

jitter Points, jittered to reduce overplotting
line Connect observations, in order of x value
linerange An interval represented by a vertical line
path Connect ohservations, in original order
point Points, as for a scatterplot

pointrange An interval represented by a vertical line, with a point
in the middle

polygzon Palygon, a filled path

quantile Add guantile lines from a quantile regression

ribbon Ribbons, ¥ range with continuous x values

rug Marginal rug plots

segment Single line segments

smooth Add a smoothed condition mean

step Connect ohservations by stairs

text Textual annotations

tile Tile plot as densely as possible, assuming that every
tile is the same size

vline Line, vertical

Introduction to R Programmir Data Visualization

Geoms that were created by modifying the defaults of another geom

Aliased geom Base geom Changes in default

aren ribbon aes(min = 0, max = y), position = "stack"
density area stat = "density"

freqpaly line stat = "bin"

histogram bar stat = "bin"

Jjitter point position = "jitter"

quantile line stat = "gquantile"

smooth ribbon stat = "smooth"

Introduction to R Programmir Data Visualization

Data and Set-up

N

library(ggplot2)

The general syntax of using ggplot2 will look like this:

ggplot(data = <default data set>,
aes(x = <default x axis variable>,
y = <default y axis variable>,
... <other default aesthetic mappings>),
... <other plot defaults>) +

geom_<geom type>(aes(size = <size variable for this geom>,
... <other aesthetic mappings>),
data = <data for this point geom>,
stat = <statistic string or function>,
position = <position string or function>,
color = <"fixed color specification">,

<other arguments, possibly passed to the _stat function)

+

scale <aesthetie>_ <type>(name = <"scale label">,
breaks = <where to put tick marks>,
labels = <labels for tick marks>,
... <other options for the scale>) +

theme(plot.background = element_rect(fill = "gray"),
«.. <other theme elements>)

Introduction to R Programmi Data Visualization

Stat

A statistical transformation, or stat, transforms the data, typically by
summarizing it in some manner.

A stat takes a dataset as input and returns a dataset as output, and so a
stat can add new variables to the original dataset.

1| ggplot (diamonds, aes(carat)) + geom_histogram(aes(y = ..density..), binwidth = 0.1) |

Introduction to R Programming Data Visualization

Stats in ggplot2

Name Description

bin Bin data

boxplot Calculate components of box-and-whisker plot
contour Contours of 3d data

density Density estimation, 1d

density .2d Density estimation, 2d

function Superimpose a function

identity ~ Don't transform data

aq Calculation for quantile-guantile plot
quantile Continuous quantiles

smooth Add a smoother

spoke Convert angle and radius to xend and yend

step Create stair steps

sum Sum unique values. Useful for overplotting on scatter-
plots

summary Summarise ¥ values at every unique x

unique Remowve duplicates

Introduction to R Programming Data Visualization

Default statistics and aesthetics

Name Default stat Aesthetics

abline abline colour, linetype, size

area identity colour, fill, linetype, size, x, y

bar bin colour, fill, linetype, size, weight, x

bin2d bin2d colour, fill, linetype, size, weight, xmax, xmin, ymax,
ymin

blank identity

boxplot boxplot colour, fill, lower, middle, size, upper, weight, x,
¥ymax, ymin

contour contour colour, linetype, size, weight, x, ¥

crosshbar identity colour, fill, linetype, size, x, ¥, ymax, ymin

density density colour, fill, linetype, size, weight, x, ¥

density2d density2d colour, linetype, size, weight, x, ¥

errorbar identity colour, linetype, size, width, x, ymax, ymin

freqpoly bin colour, linetype, size

hex colour, fill, size, x, ¥

histogram colour, fill, linetype, size, weight, x

hline hline colour, linetype, size

jitter identity colour, fill, shape, size, x, ¥

line identity colour, linetype, size, x, y

linerange identity colour, linetype, size, x, ymax, ymin

path identity colour, linetype, size, x, y

point identity colour, fill, shape, size, x, ¥

pointrange identity colour, fill, linetype, shape, size, x, ¥, ymax, ymin

polygon identity colour, fill, linetype, size, x, ¥

quantile quantile colour, linetype, size, weight, x, ¥

rect identity colour, fill, linetype, size, xmax, xmin, ymax, ymin

ribbon identity colour, fill, linetype, size, x, ymax, ymin

TUE identity colour, linetype, size

segment identity colour, linetype, size, x, xend, y, yend

smooth smooth alpha, colour, fill, linetype, size, weight, x, ¥

step identity colour, linetype, size, x, y

text identity angle, colour, hjust, label, size, vjust, x, ¥

tile identity colour, fill, linetype, size, x, ¥

vline vline colour, linetype, size

Introduction to R Programmi Data Visualization

Position adjustments

Adjustment Description

dodge Adjust position by dodging overlaps to the side

fill Stack overlapping objects and standardise have equal height
identity Don't adjust position

jitter Jitter points to avoeld overplotting

stack Stack overlapping objects on top of one another

The different types of adjustment are best illustrated with a bar chart.

Introduction to R Programming Data Visualization

Using ggplot2

Quick Example with Histograms

We have a couple of options for quickly producing histograms off the
columns of a data frame.

e hist()
e gplot()

o ggplot()

Introduction to R Programming Data Visualization

W N

library(data.table)
df <- fread('state_real_estate_data.csv')
hist (df $Home.Value)

Histogram of df$Home.Value

1500 2000
I |

Frequency

1000
I

500

r T T
0e+00 2e+05 4e+05

df$Home.Value

Introduction to R Programmi

6e+05

8e+05

=] F

Data Visualizati

169

347

Using gplot

library(ggplot2)

library(ggplot2)
gplot (df $Home . Value)

un

N

1000+

count

dfsHome Value

Introduction to R Programming Data Visualization

Using ggplot

N =

ggplot (data = df,aes(df$Home.Value))+geom_histogram()

1500~

1000~

s00-

1] 250000 500000 75000
diSHome Value

Introduction to R Programmir Data Visualization

Histograms with ggplot2

We'll use the movie dataset that comes with ggplot:

library(ggplot2movies)
df <- movies <- movies[sample(nrow(movies), 1000),]

ggplot(data, aesthetics)
pl <- ggplot(df,aes(x=rating))

Add Histogram Geometry
pl + geom_histogram()

O~NOU A WN =

[m] = =

172/347
Introduction to R Programming Data Visualization

5.0

rating

WE; 0
Introduction to R Programmir Data Visualization

Adding Color

N =

pl <- ggplot(df,aes(x=rating))

1 + geom_histogram(binwidth=0.1,color='red',fill='pink')
P g g P

count

- bl

rating

Introduction to R Programmi

m]

=

Data Visualization

174/347

Adding Labels

1| pl <- ggplot(df,aes(x=rating))
2| pl + geom_histogram(binwidth=0.1,color='red',fill='pink') + xlab('Movie Ratings')+ ylab('
Occurences') + ggtitle(' Movie Ratings')
Movie Ratings

§Zu~ AN 1 H

£

§

- Move Ratngs -
= = = = 175/347
Introduction to R Programmir Data Visualization

Change Alpha (Transparency)

[N

pl <- ggplot(df,aes(x=rating))

N

pl + geom_histogram(binwidth=0.1,fill='blue’',alpha=0.4) + xlab('Movie Ratings')+ ylab('
Occurences')

Ocourences

5o 7s
Movie Ratings

= = - E DA 176/347
Introduction to R Programming Data Visualization

Linetypes

We have the options: "blank”, "solid”, "dashed”, "dotted”, "dotdash”,
"longdash”, and "twodash".

pl <- ggplot(df,aes(x=rating))

N =

pl + geom_histogram(binwidth=0.1,color='blue',fill='pink',linetype='dotted') + xlab('Movie
Ratings')+ ylab('Occurences')

= = DA 177/347
Introduction to R Programming Data Visualization

178/347

100

Q

Data Visualization

Movie Ratings

50

2] ° °

8
$80UBINYDQ

Introduction to R Programmi

Advanced Aesthetics

We can add a aes() argument to the geom_histogram for some more

advanced features. But, ggplot gives you the ability to edit color and fill
scales.

N

pl <- ggplot(df,aes(x=rating))
pl + geom_histogram(binwidth=0.1,aes(fill=
")

w

..count..)) + xlab('Movie Ratings')+ ylab('Occurences

Introduction to R Programming Data Visualization

20~

Qccurences

0-

25 50 75 100
Movie Ratings

Introduction to R Programmir Data Visualization

You can further edit this by adding the scale_fill_gradient() function to
your ggplot objects:

-

Adding Labels
pl <- ggplot(df,aes(x=rating))

pl2 <- pl + geom_histogram(binwidth=0.1,aes(fill=
Occurences')

w N

..count..)) + xlab('Movie Ratings')+ ylab('

scale_fill_gradient('Label’',lo

o oA

colorl,high=color2)
pl2 + scale_fill_gradient('Count',low='blue',high='red")

=] F

181/347
Introduction to R Programming Data Visualization

20~

Qccurences

0-

25 50 75 100
Movie Ratings

Introduction to R Programmir Data Visualization

1| # scale_fill_gradient ('Label',low=colorl,high=color2)
2| pl2 + scale_fill_gradient('Count',low='darkgreen',high='lightblue')

Count

5

20

Occurences

L al

s
Movie Ratings

= = = = DA 183/347
Introduction to R Programming Data Visualization

Adding Density Plot

N

pl <- ggplot(df,aes(x=rating))
pl + geom_histogram(aes(y=..density..)) + geom_density(color='red')

w

0a-

density

rating

Introduction to R Programming Data Visualization

Scatterplots with ggplot2

Scatter plots allow us to place points that let us see possible correlations
between two features of a data set.

library('ggplot2')
df <- mtcars

pl <- ggplot(data=df,aes(x = wt,y=mpg))
pl + geom_point ()

G W N

Introduction to R Programming Data Visualization

e
.
o
25+
o
. . 5
E
o o
5
5
o
* .
5
o
o o
; 3 H :
wt
o = = £ 186/347

Introduction to R Programmi Data Visualization

Adding 3rd feature

pl <- ggplot(data=df,aes(x = wt,y=mpg))
pl + geom_point (aes(color=cyl))

[

b o
201
o
o
251
- oyl
s
0 0 ;
2
£ . 6
o o s
20- = '
8
$
1 o)
"
H H H :
wt
o =] = = =

Introduction to R Programming Data Visualization

[

pl <- ggplot(data=df,aes(x = wt,y=mpg))
pl + geom_point (aes(color=factor(cyl)))

[N

30-
.
25-
factor(cyl)
o o N
2
2 .
. . .
o o .s
20- .
.
.
: o .
15- . =
o 0o
10-
3 s i)
wt

= = 188/347
Introduction to R Programmir Data Visualizati

[

pl <- ggplot(data=df,aes(x = wt,y=mpg))
pl + geom_point(aes(size=factor(cyl)))

[N

.
s0-
.
.
25-
.
factor(cyl)
. L4 LI
g T .
o ° o:
2
°
‘ []
° []
. % o -
[]
®

wt

Introduction to R Programmir Data Visualization

1| # With Shapes
2| p1 <- ggplot(data=df,aes(x = wt,y=mpg))
3

pl + geom_point (aes(shape=factor(cyl)))

factor(cyl)
.

)
s

N .

-, .

.
i 5
wt

190/347

Introduction to R Programmir Data Visualizati

Better version

With Shapes

pl <- ggplot(data=df,aes(x = wt,y=mpg))

pl + geom_point (aes(shape=factor(cyl),color=factor(cyl)),size=4,alpha=0.6)

ENERENE

factor(cyl)
B
As
A A s

mpg

»E>

-n

wt

o = = 191/347

Introduction to R Programmir Data Visualization

Gradient Scales

1| pl + geom_point(aes(colour = hp),size=4) + scale_colour_gradient (high='red',low = "blue")
35
L]
L]
. ®®
.
.
25-
L] hp.
w0
. . 20
g P
® e % O 0
0
- —
H .
&
.
O o
o
1 0% o
S °
°
o o

wt

o = = 192/347

Introduction to R Programmir Data Visualizati

Barplots with ggplot2

There are two types of bar charts, determined by what is mapped to bar
height.
o By default, geom_bar uses stat="count” which makes the height of
the bar proportion to the number of cases in each group

o If you want the heights of the bars to represent values in the data, use
stat="identity” and map a variable to the y aesthetic

Introduction to R Programming Data Visualization

GAWN -

library(ggplot2)
g <- ggplot(mpg, aes(class))

g + geom_bar ()

count

a0
| I I
0- - -

2eeter compact midsize minivan pickup subcompact siv
class

Introduction to R Programmir Data Visualization

[

Bar charts are automatically stacked when multiple bars are placed at the same location
2| g + geom_bar(aes(fill = drv))

o
“0-
drv
£ [&
8 [§
G
2-
o- IIIIIIII IIIIIIII
2seater compact midsize minivan pickup subcompact sov
class
o F = = E 9DHAE

Introduction to R Programming Data Visualization

195/347

1| g + geom_bar(aes(£fill

= drv), position = "fill")
.00
075
drv
£ u
S os0-
g [[
=
025
000-
2seater compact midsize minivan pickup
class

subcompact

= = = DA 196/347
Introduction to R Programming Data Visualization

[

You can instead dodge, or fill them

2| g + geom_bar(aes(fill = drv), position = "dodge")
s0-
40-
20~
arv
€ | B
H
8 ='
20- I
mr .
o- -
2seater compact midsize minivan pickup subcompact sl
class
=} = =

DA 197/347
Introduction to R Programming

Data Visualization

W N

Boxplots with ggplot2

df <- mtcars

pl <- ggplot(mtcars, aes(factor(cyl), mpg))
pl + geom_boxplot ()

3s-

mpg

Introduction to R Programming

5
factor(cyl)

[m] = =

Data Visualization

198

347

1| pl + geom_boxplot() + coord_flip()

factor(eyl)

mpg

[m] = =

199/347

Introduction to R Programmir Data Visualizati

1

pl + geom_boxplot(aes(£fill = factor(cyl)))

mpg

factor(eyl)
B
e
B

Introduction to R Programming

6
factor(eyl)

m]

=

Data Visualization

DA

200/347

1| pl + geom_boxplot(fill = "grey", color = "blue")
35-
30-
25~
2
£
20-
15-
.
10-
4 6 &
factor(eyl)
o = = = = 9DAC 201/347
Introduction to R Programming Data Visualization

Coordinates and Faceting with ggplot2

1| library (ggplot2)
2| pl <- ggplot (mpg,aes(x=displ,y=hwy)) + geom_point ()
3| pl
“0-
wl S
s R S8
: ! displ : !
o 5 = = =

202/347

Introduction to R Programming Data Visualization

Setting x and y limits

You can use + scale_x__continuous and scale_y__continuous with an
additional limits=c(low,high) argument to set the scale.

A sometimes nicer way to do this is by adding 4+ coord_cartesian() with
xlim and ylim arguments and pass in numeric vectors.

1‘ pl + coord_cartesian(xlim=c(1,4),ylim=c(15,30)) ‘

Introduction to R Programming Data Visualization

. e .
.
.
.« . o . . .
25 . . . o . . .
. . o
. . . .
B
=
.
20 . .
. .
o . . .
15+ .
i H 3 i
displ

[} = = 204 /347

Introduction to R Programmi Data Visualizati

Aspect Ratios

You can use the coord_fixed() method to change the aspect ratio of a
plot (default is 1:1).

un

aspect ratio,

expressed as y / x
pl + coord_fixed(ratio = 1/3)

N

=] F

DAC 205/347
Introduction to R Programming Data Visualization

40-

o = = 206/347

Introduction to R Programmi Data Visualization

Facets

1

un

help(facet_grid)

The best way to set up a facet grid (multiple plots) is to use facet_grid()
p <- ggplot(mpg, aes(displ, cty)) + geom_point ()
p + facet_grid(.

~ cyl)

o = = DA 207/347
Introduction to R Programming Data Visualization

ECR)
.
30-
.
.e
.
25- se
..
. .

. .
0- e e .
ew
-
. weme oo
P “ o se . oo e
15+ . o me . o« o .
. ome - .
-
.
10+
.
3 3 4 5 6 7 2 3 4 5 6 4 5 6 4 2] 4 5 6 7

208/347

Introduction to R Programm

1| p + facet_grid(drv ~ .)

e o

oty
ssss

displ

Introduction to R Programm

1

p+

facet_grid(drv ~ cyl)

Themes

There are a lot of built-in themes in ggplot and you can use them in two
ways, by stating before your plot to set the theme:

l‘theme_set(theme_bw()) ‘

or by adding them to your plot directly

l‘my,plot + theme_bw () ‘

There is also a great library called ggthemes which adds even more
built-in themes for ggplot. You can also customize your own themes

Introduction to R Programming Data Visualization

Themes elements

Theme element Type Description

axis.line segment line along axis

axis.text.x text x axis label

axis.text.y text vy axis label

axis.ticks segment axis tick marks
axis.title.x text horizontal tick labels
axis.title.y text vertical tick labels
legend.background rect background of legend
legend.key rect background underneath legend keys
legend.text text legend labels

legend.title text legend name
panel.background rect background of panel
panel.border rect horder around panel
panel.grid.major line major grid lines
panel.grid.miner line miner grid lines
plot.background rect background of the entire plot
plot.title text plot title

strip.background rect background of facet labels
strip.text.x text text for horizontal strips
strip.text.y text text for vertical strips

Introduction to R Programming Data Visualization

Legends and axes

The components of the axes and legend

. g Legend
5 f
Axis
4 - Cylinders =+ Legend fitle
., L, " . B
= T em . &
. L
3 _—
o j . 1 4 - Key label
is label -
L]
- . . L KEY
27 . -
] Tick mark
1 | | 0 and label
15 20 25 a0
mpg

Introduction to R Programming Data Visualization

library(ggplot2)
df <- mtcars

S wWN

pl <- ggplot(df,aes(x=mpg,y=hp)) + geom_point ()
print (pl)

200-

Bl
mpg

=] F

= . 214/347
Introduction to R Programmir Data Visualizati

1| pl + theme_bw()

300

-
.
L]
a 200
=
- L] -
- e
.
- -
..
-
100 . .
.
10 15 20 25
mpg

30 35
= = - = DA 215/347
Introduction to R Programmi Data Visualization

1| pl + theme_classic()
.
3001
.
..
.
.
.
o 2001
=
LI I T,
-
- L]
L]]
.
100 . o
10

.
L]
. L] L] -
.
15 20 25 30 35
mpg
= = - Y 216/347
Introduction to R Programmi Data Visualization

More Built-in Themes...

pl + theme_dark()
pl + theme_get ()
pl + theme_light()

pl + theme_minimal ()

O©OWONOOHAE WN -

pl + theme_void()

o = = £ DA 217/347

Introduction to R Programming Data Visualization

Text Mining Application

o (= = = DA 218/347
Introduction to R Programming Text Mining Application

Natural Language Processing (NLP)

@ Imaging you work for Google News and you want to group news
articles by topic

@ Or you work for a legal firm and you need to sift through thousands
of pages of legal documents to find relevant ones

This is where NLP can help!

Introduction to R Programming Text Mining Application

NLP

We will want to:

@ Compile documents

@ Featurize them

o Compare their features

= = - DA 220/347
Introduction to R Programming Text Mining Application

NLP

Simple Example:
@ You have 2 documents:

» “Blue House”
» “Red House"

@ Featurize based on word count:

> “Blue House” — > (red,blue,house) — > (0,1,1)
» “Red House” — > (red,blue,house) — > (1,0,1)

Introduction to R Programming Text Mining Application

NLP

@ A document represented as a vector of word counts is called a “Bag
of Words"

» “Blue House” — > (red,blue,house) — > (0,1,1)
» “Red House” — > (red,blue,house) — > (1,0,1)
@ You can use cosine similarity on the vectors made to determine
similarity:

A-B
sim(A4, B) = cos(0) = W d

Introduction to R Programming Text Mining Application

NLP

@ We can improve on Bag of Words by adjusting word counts based on
their frequency in corpus (the group of all the documents)

@ We can use TF-IDF (Term Frequency - Inverse Document Frequency)

@ Term Frequency - Importance of the term within that document

» TF(d,t) = Number of occurances of term t in document d
» Inverse Document Frequency - Importance of the term in the corpus

* |IDF(t) = log(D/t) where D is total number of documents and t is
number of documents with the term

Introduction to R Programming Text Mining Application

NLP

Mathematically, TF-IDF is then expressed

N
w, ,=tf y><log(df)

x.Y¥

= frequency of x iny

df = number of documents containing x
N = total number of documents

o =3 = = DA 224/347
Introduction to R Programming Text Mining Application

Text Mining Application with R

Necessary libraries
@ tm
twitterR

wordcloud

el017

°

o

o RColorBrewer
]

@ class

= = - = A 225/347
Introduction to R Programming Text Mining Application

Create a Twitter App

Create an application

Application Details
Name *
myapp

Your application name. This is used of, 32 characters max.

Description

NLP project
Your application description, which will be shown in user-facing authorization screens. Between 10 and 200 characters max.
Website *

https://www.google.com

Your application’s publicly accessible home page, where users can go to downioad, make use of, or find out your application. This AL is used in the
‘source attribution for by your d will be shown in L
(Ifyou don't have & URL yet, just put a placeholder here but remember to change I fater,)

Callback URL

h Auth 1.0a e callback URL on the request token step, regardliess of the value
given here. To restrict your application from using callbacks, leave this field blank.

Developer Agreement

Yes, | have read and agree to the Twitter Developer Agreement.

Create your Twitter application

o = = £ £ 9DAC 26/347

Introduction to R Programm

Create a Twitter App (cont.)

© Create an Account on Twitter
@ Create a new app at: https://apps.twitter.com/
© You may need to point it to a personal URL

@ Get Your Keys Under the Keys and Access Tokens tab

Introduction to R Programming Text Mining Application

https://apps.twitter.com/

Regular Expression Review

grep() - Return the index location of pattern matches

grep('A', c('A','B','C','D','A"))

N =

3|15

nchar() - Length of a string

-

nchar ('helloworld')

3|10

gsub() - perform replacement of the matching patterns

gsub('pattern', 'replacement','hello have you seen the pattern here?')

N =

3| 'hello have you seen the replacement here?'

Introduction to R Programming Text Mining Application

Text Manipulation

paste() - concatenate several strings together

print(paste('A','B','C',sep="'..."))

N =

w
—
=
)
=
w
Q

substr() - returns the substring in the given character range start:stop for
the given

-

substr('abcdefg',start=2,stop = 5)

3| 'bede!

strsplit() - splits a string into a list of substrings based on another string
split in x

[N

strsplit ('2016-01-23"',split="'-")

3| '2016' '01' '23'

Introduction to R Programmin, Text Mining Application
g g g ApP!

Twitter Mining

Step 1: Import Libraries

library(twitteR)
library (tm)
library(wordcloud)
library (RColorBrewer)

S wWN

Step 2: Search for Topic on Twitter
We'll use the twitteR library to data mine twitter. First you need to
connect by setting up your Authorization keys and tokens.

1

setup_twitter_oauth(consumer_key, consumer_secret, access_token=NULL, access_secret=NULL)

We will search twitter for the term ‘soccer’

[

soccer.tweets <- searchTwitter(“soccer", n=2000, 1ang=“en")
soccer.text <- sapply(soccer.tweets, function(x) x$getText())

N

Introduction to R Programming Text Mining Applic:

Twitter Mining (cont.)

Step 3: Clean Text Data
We'll remove emoticons and create a corpus

[N

soccer.text <- iconv(soccer.text, 'UTF-8', 'ASCII')
soccer.corpus <- Corpus(VectorSource(soccer.text))

N

Step 4: Create a Document Term Matrix
We'll apply some transformations using the TermDocumentMatrix
Function

1| term.doc.matrix <- TermDocumentMatrix(soccer.corpus, control = list(removePunctuation = TRUE,
stopwords = c("soccer","http", stopwords("english")), removeNumbers = TRUE,tolower = TRUE

)

Introduction to R Programming Text Mining Applic:

Twitter Mining (cont.)

Step 5: Check out Matrix

1| head(term.doc.matrix)
2| term.doc.matrix <- as.matrix(term.doc.matrix)

Step 6: Get Word Counts

1| word.freqs <- sort(rowSums(term.doc.matrix), decreasing=TRUE)
2| dm <- data.frame(word=names(word.freqs), freq=word.freqgs)

Step 7: Create Word Cloud

wordcloud (dm$word, dm$freq, random.order=FALSE, colors=brewer.pal(8, "Dark2"))

1

Introduction to R Programming Text Mining Application

< Jfcjustinbieber great Via new g girls Giss says

= xexsrorff music ? Vista playezag‘s

overy
get PlY e o S

today footbalrlife &
“ best Justm d

sal fun
- £ game like

$: playing |
= california =
Leam march playa -

2= p % sex red matter
£ mind H i
S e footatl Al |p b dUO qugx
o

‘u-,,dsﬁ.ifsmiﬂss coach final DOYS mis youtube let 9ot

season

world

g

layers ©
much

st league

[} = = =

DA 233/347

Introduction to R Programming Text Mining Application

rtweet package

You need to install an rtweet package

library(rtweet)

whatever name you assigned to your created app
appname = "Ziml"

G W

twitter_token = create_token(app = "Ziml", consumer_key = api_key, consumer_secret = api_secret
)

tw = search_tweets("NorthKorea", n = 1200, token = twitter_token, lang = "en")

head (tw)

~N o

[} = = 234/347
Introduction to R Programmi Text Mining Application

Example - Who is following whom?

library(rtweet)

get user IDs of accounts followed by BBC
bbc_fds = get_friends("bbc")

lookup data on those accounts
bbc_fds_data = lookup_users(bbc_fds$user_id)
head (bbc_fds_data)

get user IDs of accounts following bbc
bbc_flw = get_followers("bbc", n = 1000)

lookup data on those accounts
bbc_flw_data =lookup_users(bbc_flw$user_id)
head (bbc_flw_data)

get user IDs of accounts followed by CNN
tmls = get_timelines(c("cnn", "BBCWorld", "foxnews"), n = 3200)
head (tmls)

tmls=as.data.frame(tmls)

17| head (tmls})

O©OWONOOHA WN -

Lol pelll ol svlll -l gl g
DGR WN RO

o = = 235/347

Introduction to R Programmir Text Mining Application

Facebook Mining

@ Get token from
https://developers.facebook.com/tools/explorer/

@ Install a Rfacebook package

Introduction to R Programming Text Mining Application

https://developers.facebook.com/tools/explorer/

Example - Facebook

Search Group

[N

library (Rfacebook)
2| token=mytoken
3| ids <- searchGroup(name="rusers", token=token)

Search Page

1| ## search pages relating to Thailand

2| sp=searchPages("Thailand",token=token,n=15)
3| View(sp)

4| head (post)

[} = =
Introduction to R Programmi Text Mining Application

Example - Facebook (cont.)

Get Page and Posts

1| page = getPage(page="rbloggers", token=token, n=1000, since='2018/01/01"', until='2018/03/31")
2| head (page)

3| post = getPost(post=page$id[1], n=12, token=token)

4| head (post)

[m] = =

238/347
Introduction to R Programming Text Mining Application

DO WN -

© o~

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

Count Unique Tweets

library(rtweet)
library (dplyr)
library(tidytext)
library(ggplot2)

climate_tweets <- search_tweets(q =
FALSE)

head(climate_tweets$text)

remove http elements manually

climate_tweets$stripped_text <- gsub("http.*","",

climate_tweets$stripped_text <- gsub("https.*","",

remove punctuation, rert to lo
climate_tweets_clean <- climate_tweets %>% dplyr:
stripped_text)
cc=climate_tweets_clean
head(cc)

ot

conv ercase

%

anti_join(stop_words)

the top 15

notice

any

top—cc %>% coun
toph>%

ggplot (aes(x =
geom_col () +
x1lab(NULL) +
coord_flip() +
labs(x = "Count",
theme_bw ()

word,

n)) +

y =

y = "Unique words", title =

"#climatechange", n =

, add id for

"Count of unique words found in

1000, lang = "en", include_rts =

climate_tweets$text)
climate_tweets$stripped_text)

each t t!

:select(stripped_text) %>} unnest_tokens(word,

##remove stop words

tweets") +

o = = 239/347

Introduction to R Programmir xt Mining Applicati

Count of unique words found in tweets

climatechange
climate -
change 4

amp -

arctic -

learn 4

glebal 1

world 4

Count
-|||IIIII|||||‘

[

=2

(=]
o
=
=

environment -

time 4

action 1
future -
globalwarming

earth 7

nature 4

(=%

200
Unique words

=g
=

Introduction to R Programming Text Mining Applicati

Web Mining

Read in data from HTML tables with XML

1| library (XML)

2| library (RCurl)

3

4| #Read in data from HTML table 7ith XML

5| url="https://en.wikipedia.org/wiki/2016_Summer_Olympics_medal_table"
6| ##webpage we are intersted in

7

8| urldata <- getURL(url) #get data from this URL

9| data <- readHTMLTable(urldata, stringsAsFactors = FALSE)
10| #read the hHTML table

11

12| #medal tally

13| names (data)

14| head (data)

15| x=data$ 2016 Summer Olympics medal table"

16| head (x)

[} = = 241/347

Introduction to R Programmir Text Mining Application

O©OONOO A WN -

e o<
N = O

13

20
21
22
23

25
26

Web Mining (cont.)

Cleaning Tables Extracted from Webpages

library(rvest)

library(stringr)

library(tidyr)

##Access the webpage with the tabular data

url = 'http://espn.go.com/nfl/superbowl/history/winners'

webpage =read_html(url)

sb_table = html_nodes(webpage, 'table')

sb = html_table(sb_table) [[1]] ##acces the first table on the page

head (sb)

preliminary processing:remove the first two rows, and set the column names

sb = sb[-(1:2), J#row.colunn

names (sb) = c("number", "date", "site", "result")

head (sb)

#divide between winner and losers

sb = separate(sb, result, c('winner', 'loser'), sep=', ', remove=TRUE)

head (sb)

we split off the from the nner and loser colum
##The function str_extract from the stringr package finds a
#substring matching a pattern

pattern =" \\d+$"

sb$winnerScore = as.numeric(str_extract(sb$winner, pattern))
sb$loserScore =as.numeric(str_extract(sb$loser, pattern))
sb$winner = gsub(pattern, "", sb$winner)

sb$loser =gsub(pattern, "", sb$loser)

head (sb)

[m] = =

Introduction to R Programmir ext Mining Appli

242

3
3,

47

Sentiment Analysis

@ Sentiment = feelings (e.g., attitude, emotions, opinions)
@ Subjective impressions, not facts

@ Generally, a binary opposition in opinions is assumed

e For/against, like/dislike, good/bad, etc.

@ Some sentiment analysis jargon: Semantic orientation, Polarity

Introduction to R Programming Text Mining Application

What is Sentiment Analysis?

@ Using NLP, statistics, or machine learning methods to extract,
identify, or otherwise characterize the sentiment content of a text unit

@ Sometimes referred to as opinion mining, although the emphasis in
this case is on extraction

Questions SA might ask

@ Is this product review positive or negative?

@ Is this customer email satisfied or dissatisfied?

@ Based on a sample of tweets, how are people responding to this ad
campaign/product release/news item?
How have bloggers' attitudes about the president changed since the
election?

Introduction to R Programming Text Mining Application

Sentiment Analysis with R

1| library(readr)

2| library (tm)

3| library(wordcloud)

4| s=read.csv("mugabel.csv")

5| head(s)

6| names (s)

7

8| text <- as.character(s$text)

9| ## carry out text data cleaning-gsub

10| some_txt<-gsub (" (RT|via) ((?7:\\b\\wx@\\w+)+)","" ,s$text)
11| some_txt<-gsub("http[~[:blank:]]+","",some_txt)
12| some_txt<-gsub("@\\w+","",some_txt)

13| some_txt<-gsub("[[:punct:]]"," ",some_txt)
14| some_txt<-gsub("["[:alnum:]]"," ", some_txt)
15| some_txt=as.character (some_txt)

16| library (syuzhet)
17| tweetSentiment <- get_nrc_sentiment(text)
18| #syuzhet pkg
19| #Calls the NRC sentiment dictionary to calculate the pr nce of
20| #eight different emotions and their corresponding valence in a text file.
21
22| barplot (sort(colSums (prop.table(tweetSentiment[, 1:8]))), cex.names = 0.7, las = 1, main = "
Emotions in Tweets text", xlab="Percentage")
= = = = = 245/347

Introduction to R Programmir Text Mining Appli

Tidy Sentiments

##Tidy Sentiments
library(janeaustenr)
library(dplyr)
library (tm)
library(tidytext)
library(tidyverse)
library(qdapTools)
library(ggplot2)

©CO~NOO A WN -

10| austen_books_df=as.data.frame (austen_books(),stringsAsFactors=F)
11| head (austen_books_df)

12| head (austen_books_df)

13| summary (austen_books_df)

14| ## isolate a book

15| emma=austen_books_df %>% group_by(book) %>% filter(book == "Emma'")
16 | head (emma)

[} = = 246 /347

Introduction to R Programmir Text Mining Application

17
18| corpus <- Corpus(VectorSource(emma$text))

19| corpus <- tm_map(corpus, removePunctuation)

20| corpus <- tm_map(corpus, content_transformer (tolower))

21| corpus <- tm_map(corpus, removeNumbers)

22| corpus <- tm_map(corpus, stripWhitespace)

23| corpus <- tm_map(corpus, removeWords, stopwords('english'))
24| corpus <- tm_map(corpus, stemDocument)

25
26 | myDtm <- TermDocumentMatrix (corpus)
27
28
29| terms=Terms (myDtm)
30| head (terms)

31

32| ap_td = tidy(myDtm)

33| ap_td

34

35| ap_sentiments <- ap_td %>%

36| inner_join(get_sentiments("bing"), by = c(term = "word"))

37

38| tail (ap_sentiments)

39

40

41| ap_sentiments %>}, count(sentiment, term, wt = count) %>% ungroup() %>% filter(m >= 100) %>%
mutate(n = ifelse(sentiment == "negative", -n, n)) %>% mutate(term = reorder(term, n))
%>% ggplot(aes(term, n, fill = sentiment)) +

42| geom_bar(stat = "identity") +

43| ylab("Contribution to sentiment") +
44| theme _bw()+
45| coord_flip()

Introduction to R Programmir xt Mining Applicati

well
good 7
like 5
great 5
better q

love q

sentiment
. negative
. positive

E enough -
£ comfort -
perfect 4
smile 4
pleas 1

doubtq

poor g

miss =

T
-600 -400 -200
Contribution to sentiment

=
[
=1
=3

= = = = DAC 248/347
Introduction to R Programming Text Mining Application

Machine Learning

= = - £ DA 249/347
Introduction to R Programming Machine Learning

Introduction to Machine Learning

We will be using Introduction to Statistical Learning by Gareth James
as a companion book.

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

An Introduction
to Statistical

Learning

o = = E DAt 250/347

Introduction to R Programming Machine Learning

Companion Book

@ Students who want the mathematical theory should do the reading

@ Students who just want light theory and more interested in R
application

@ Read Chapter 1 and 2 to gain a background understanding the
machine learning

Introduction to R Programming Machine Learning

What is Machine Learning?

@ Machine learning is a method of data analysis that automates
analytical model building

@ Using algorithms that iteratively learn from data, machine learning
allows computers to find hidden insights without being explicitly
programmed where to look

Introduction to R Programming Machine Learning

What is it used for?

o Fraud detection Network intrusion detection
@ Web search results Recommendation Engines
@ Real-time ads on web pages Customer Segmentation

o Credit scoring and next-best Text Sentiment Analysis

offers Predicting Customer Churn

Prediction of equipment Pattern and image recognition

failures Email spam filtering

@ New pricing models Financial Modeling

Introduction to R Programming Machine Learning

Machine Learning Process

Model
Training &
Building

Model
Deployment

DEVE] Data
Acquisition Cleaning

Introduction to R Programming Machine Learning

Supervised Learning

@ Supervised learning algorithms are trained using labeled examples,
such as an input where the desired output is known

@ For example, a piece of equipment could have data points labeled “F"
(failed) or “R" (runs)

@ The learning algorithm receives a set of inputs along with the
corresponding correct outputs, and the algorithm learns by comparing
its actual output with correct outputs to find errors

@ It then modifies the model accordingly

Introduction to R Programming Machine Learning

Supervised Learning (cont.)

@ Through methods like classification, regression, prediction and
gradient boosting, supervise learning uses patterns to predict the
values of the label on additional unlabeled data

@ Supervised learning is commonly used in applications where historical
data predicts likely future events

@ For example, it can anticipate where credit card transactions are likely
to be fraudulent or which insurance customer is likely to file a claim

@ Or it can attempt to predict the price of a house based on different
features for houses for which we have historical price data

Introduction to R Programming Machine Learning

Unsupervised Learning

@ Unsupervised learning is used against data that has no historical
labels

@ The system is not told the “right answer.” The algorithm must figure
out what is being shown

@ The goal is to explore the data and find some structure within

@ Or it can find the main attributes that separate customer segments
from each other

@ Popular techniques include self-organizing maps, nearest-neighbor
mapping, k-means clustering and singular value decomposition

@ These algorithms are also used to segment text topics, recommend
items and identify data outliers

Introduction to R Programming Machine Learning

Reinforcement Learning

@ Reinforcement learning is often used for robotics, gaming and
navigation

@ With reinforcement learning, the algorithm discovers through trial and
error which actions yield the greatest rewards

@ This type of learning has three primary components: the agent (the
learner or decision maker), the environment (everything the agent
interacts with) and actions (what the agent can do)

@ The objective is for the agent to choose actions that maximize the
expected reward over a given amount of time

@ The agent will reach the goal much faster by following a good policy

@ So the goal in reinforcement learning is to learn the best policy

Introduction to R Programming Machine Learning

Linear Regression

= = - = DA 259/347
Introduction to R Programming Machine Learning

History

This all started in the 1800s with a
guy named Francis Galton.
Galton was studying the
relationship between parents and
their children. In particular, he
investigated the relationship
between the heights of fathers and
their sons. However Galton's
breakthrough was that the son’s
height tended to be closer to the
overall average height of all people

tall as his father.

What he discovered was that a
man's son tended to be roughly as

Introduction to R Programming Machine Learning

Example

Let's take Shaquille O’Neal as an example. Shaq is really tall:7ft 1in (2.2
meters). If Shaq has a son, chances are he'll be pretty tall too. However,
Shaq is such an anomaly that there is also a very good chance that his son
will be not be as tall as Shaq.

Turns out this is the case: Shaq's son is pretty tall (6 ft 7 in), but not
nearly as tall as his dad. Galton called this phenomenon regression, as in

“A father’s son's height tends to regress (or drift towards) the mean
(average) height.”

Introduction to R Programming Machine Learning

Example

Let’s take the simplest possible
example: calculating a regression
with only 2 data points.Let's take
the simplest possible example:
calculating a regression with only 2
data points.

Introduction to R Programming Machine Learning

All we're trying to do when we calculate our regression line is draw a line
that's as close to every dot as possible.

For classic linear regression, or “Least Squares Method", you only measure
the closeness in the “up and down” direction

Introduction to R Programming Machine Learning

Now wouldn't it be great if we could apply this same concept to a graph
with more than just two data points?

Our goal with linear regression is to minimize the vertical distance
between all the data points and our line. So in determining the best line,
we are attempting to minimize the distance between all the points and
their distance to our line.

There are lots of different ways to minimize this, (sum of squared errors,

sum of absolute errors, etc), but all these methods have a general goal of
minimizing this distance.

Introduction to R Programming Machine Learning

Son's Height

Father's Height

Introduction to R Programmir Machine Learni

Using R for Linear Regression

use + sign. i.e. (y ~ x+z)

Linear regression

Formulas in R take the form (y ~ x). To add more predictor vairables, just
modeling command

Formula
[|
mcdel| <= lm(]iog(PINCP,base=10|) ~ PGEP + SEX + COW + SCHLl, data=dtrain|)
|
R object to save Quantity we want Variables available to
result in to predict make prediction

[
Data frame to
use for training
= = - DA 266/347
Introduction to R Programming Machine Learning

Linear
regression model
Prediction Data to use
command in prediction

— —

ldtestSpredLogPINCI] <- predict (model, newdata=dtest)

Store the prediction as a new
column named “predLogPINCP”

Idtrain$predLogPINCP <- predict (model,newdata=dtrain)

J

Same operation on training data

= = = = DA 267/347
Introduction to R Programming Machine Learning

Example - Linear Regression with R

Remember that Linear Regression is a supervised learning algorithm,
meaning we'll have labeled data and try to predict new labels on unlabeled
data. We'll explore some of the following concepts:

Get our Data
Exploratory Data Analysis (EDA)

Clean our Data

Review of Model Form

Train and Test Groups

Linear Regression Model

Introduction to R Programming Machine Learning

Get our Data

We will use the Student Performance Data Set from UC Irvine's Machine
Learning Repository (student-mat.csv).

1| # Read CSV, note the delimiter (sep)
2| df <- read.csv('student-mat.csv',sep=';"')
3| head (df)

o = = 269/347

Introduction to R Programming Machine Learning

Clean the Data

Next we have to clean this data. This data is actually already cleaned for
you, But here are some things you may want to consider doing for other
data sets:

Check for NA values

any(is.na(df))
FALSE

N =

Introduction to R Programming Machine Learning

Categorical Features

Moving on, let's make sure that categorical variables have a factor set to
them. For example, the MJob column refers to categories of Job Types,
not some numeric value from 1 to 5. R is actually really good at detecting
these sort of values and will take of this work for you a lot of the time, but
always keep in mind the use of factor() as a possible. Luckily this is
basically already, we can check this using the str() function:

1

str(df) ‘

Introduction to R Programming Machine Learning

Building a Model

1

1

model <- 1Im(y \sim

The general model of building a linear regression model in R look like this:
model <- Im(y \sim x1 + x2, data)
or to use all the features in your data

data) \#Uses all features

= = = DA 272/347
Introduction to R Programming Machine Learning

Train and Test Data

We'll need to split our data into a training set and a testing set in order to
test our accuracy. We can do this easily using the caTools library:

1

2| library(caTools)

3| set.seed(101)

4

5

6| sample <- sample.split(df$age, SplitRatio = 0.70)
7

8

9| train = subset (df, sample == TRUE)
10

11

12| test = subset(df, sample == FALSE)

Introduction to R Programming Machine Learning

Training our Model

Let’s train out model on our training data, then ask for a summary of that
model:

un

model <- 1m(G3 ~
summary (model)

., train)

N

=] F

DA 274/347
Introduction to R Programming Machine Learning

Model Interpretation

|Name Description

The residuals are the difference between the actual values of the variable you're predicting and predicted values from your regression--y -
¥. For most regressions you want your residuals to look like a normal distribution when plotted. If our residuals are normally distributed, this
indicates the mean of the difference between our predictions and the actual values is close to 0 (good) and that when we miss, we're
missing both short and long of the actual value, and the likelihood of a miss being far from the actual value gets smaller as the distance

1 |Residuals |from the actual value gets larger.

Think of it like a dartboard. A good model is going to hit the bullseye some of the time (but not everytime). When it doesn't hit the bullseye,
it's missing in all of the other buckets evenly {i.e. not just missing in the 16 bin) and it also misses closer to the bullseye as opposed to on
the outer edges of the dartboard.

Significance | The stars are shorthand for significance levels, with the number of asterisks displayed according to the p-value computed. =** for high

2
Stars significance and * for low significance. In this case, *** indicates that it's unlikely that no relationship exists b/w absences and G3 scores.
Estimated The estimated coefficient is the value of slope calculated by the regressien. It might seem a little confusing that the Intercept also has a
3 Coeffecient value, but just think of it as a slope that is always multiplied by 1. This number will obviously vary based on the magnitude of the variable
you're inputting into the regression, but it's always good to spot check this number to make sure it seems reasonable.
Standard - . . . y .
Error of the Measure of the variability in the estimate for the coefficient. Lower means better but this number is relative to the value of the coefficient. As
4 Cosfficient |2 rule of thumb, you'd like this value to be at least an order of magnitude less than the coefficient estimate.
Estimate
t-value of
5 the Score that measures whether or not the coefficient for this variable is meaningful for the model. You probably won't use this value itself, but
Coefficient | know that it is used to calculate the p-value and the significance levels.
Estimate

Introduction to R Programmi Machine Learni

Model Interpretation

Variable p- | Probability the variable is NOT relevant. You want this number to be as small as possible. If the number is really small, ® will display it in

& value scientific notation.
. The more punctuation there is next to your variables, the better.

7 Significance

Legend

Blank=bad, Dots=pretty good, Stars=good, More Stars=very good

Residusl The Residual Std Error is just the standard deviation of your residuals. You'd like this number to be proportional to the quantiles of the

Sd Error/ residuals in #1. For a normal distribution, the 1st and 3rd quantiles should be 1.5 +/- the std error.
8 Degrees of

Frzgedom The Degrees of Freedom is the difference between the number of observations included in your training sample and the number of variables

used in your model (intercept counts as a variable).

Metric for evaluating the goodness of fit of your model. Higher is better with 1 being the best. Corresponds with the amount of variability in
9 |R-sqguared |what you're predicting that is explained by the model.
WARNING: While a high R-squared indicates good correlation, correlation does not always imply causation.

Performs an F-test on the model. This takes the parameters of our model (in our case we only have 1) and compares it to a model that has
fewer parameters. In theory the model with more parameters should fit better. If the model with more parameters (your model) doesn't
F-statistic & | perform better than the model with fewer parameters, the F-test will have a high p-value (probability NOT significant boost). If the model
10 |resulting p- | with more parameters is better than the model with fewer parameters, you will have a lower p-value.

value
The DF, or degrees of freedom, pertains to how many variables are in the model. In our case there is one variable so there is one degree of
freedom.

Looks like Absences, Farmrel, G1, and G2 scores are good predictors. With
age and activities aslo possiblby contributing to a good model.

Introduction to R Programming Machine Learnin,

Predictions

Let’s test our model by predicting on our testing set:

1|GS.predictions <- predict(model,test) |

Now we can get the root mean squared error, a standardized measure of
how off we were with our predicted values:

1| results <- cbind(G3.predictions,test$G3)
2| colnames(results) <- c('pred','real')
3| results <- as.data.frame(results)

Introduction to R Programming Machine Learning

Now let's take care of negative predictions! Lot's of ways to this, here's a
more complicated way, but its a good example of creating a custom
function for a custom problem:

to_zero <- function(x){
“TIif (x < 009
~~I""Ireturn(0)
“~IYelse{
~~I""Ireturn(x)

SCIY

}

~NOoO oA WN -

1| results$pred <- sapply(results$pred,to_zero)

Introduction to R Programming Machine Learning

There's lots of ways to evaluate the prediction values, for example the
MSE (mean squared error):

mse <- mean((results$real-results$pred)"2)
print (mse)

[1] 4.411405

~TI

B WN =

Or the root mean squared error:

1| mse”0.5
2.10033451255583

N

Introduction to R Programming Machine Learning

K Nearest Neighbors (KNN)

= = - = DA 280/347
Introduction to R Programming Machine Learning

KNN

@ K Nearest Neighbors is a classification algorithm that operates on a
very simple principle

@ Imagine we had some imaginary data on Dogs and Horses, with
heights and weights

Horse vs Dog

New datapoint:
__—"Isita horse or a dog?

Red: Horse S
Blue: Dog .

New datapoint:
_—Is it a horse or a dog?

Height (ft)

New datapoint:
— Isita horse or a dog?

0 500 1000 1500 2000
Weight (Ibs)

Machine Learning

Introduction to R Programming

KNN (cont.)

Training Algorithm:
1. Store all the Data

Prediction Algorithm:
@ Calculate the distance from x to all points in your data

@ Sort the points in your data by increasing distance from x
© Predict the majority label of the “k” closest points

Introduction to R Programming Machine Learning

KNN (cont.)

Choosing a K will affect what class a new point is assigned to:

;
\,
.,

283/347

o & = < S
Introduction to R Programming Machine Learning

KNN (cont.)

k=1

Horse vi

Choosing a K will affect what class a new point is assigned to:

k=5

Horse v

Introduction to R Programming

«Or < Fr o«

<
Machine Learning

DA

284/347

KNN (cont.)

Choosing a K will affect what class a new point is assigned to:
k=10

Horse vi.

k=50

Horse vi

Introduction to R Programming

«Or < Fr o«

<
Machine Learning

DA

285/347

Pros

Very simple

Training is trivial

@ Works with any number of classes

Easy to add more data

o Few parameters
» K
» Distance Metric

Introduction to R Programming Machine Learning

Cons

@ High Prediction Cost (worse for large data sets)
@ Not good with high dimensional data

o Categorical Features don't work well

Introduction to R Programming Machine Learning

Example - K Nearest Neighbors

We'll use the ISLR package to get the data, you can download it with
the code below. Remember to call the library as well.

un

install.packages ("ISLR")
library (ISLR)

N

We will apply the KNN approach to the Caravan data set, which is part of
the ISLR library. This data set includes 85 predictors that measure
demographic characteristics for 5,822 individuals. The response variable is
Purchase, which indicates whether or not a given individual purchases a
Caravan insurance policy. In this data set, only 6% of people purchased
caravan insurance.

Let's look at the structure:

-

str(Caravan)
summary (Caravan$Purchase)

N

Introduction to R Programming Machine Learning

Cleaning Data

Let’s just remove any NA values by dropping the rows with them.

1

any(is.na(Caravan)) ‘

Standardize Variables

Because the KNN classifier predicts the class of a given test observation by
identifying the observations that are nearest to it, the scale of the variables
matters. Any variables that are on a large scale will have a much larger
effect on the distance between the observations, and hence on the KNN
classifier, than variables that are on a small scale.

For example, let's check out the variance of two features:

var (Caravanl[,1])
165.037847395189
var (Caravan[,2])
0.164707781931954

AW

Introduction to R Programming Machine Learning

Clearly the scales are different! We are now going to standarize all the X
variables except Y (Purchase). The Purchase variable is in column 86 of
our dataset, so let's save it in a separate variable because the knn()
function needs it as a separate argument.

purchase <- Caravan[,86]

GTAWN R

standardized.Caravan <- scale(Caravan[,-86])

Let’s check the variance again:

var (standardized.Caravan[,1])
1
var (standardized.Caravan[,2])
1

S WN e

Introduction to R Programming Machine Learning

We can see that now that all independent variables (X's) have a mean of 1
and standard deviation of 0. Great, then let’s divide our dataset into
testing and training data. We'll just do a simple split of the first 1000
rows as a test set:

test.index <- 1:1000
test.data <- standardized.Caravan[test.index,]
test.purchase <- purchase[test.index]

S wWN

N

train.data <- standardized.Caravan[-test.index,]
3| train.purchase <- purchase[-test.index]

Introduction to R Programming Machine Learning

Using KNN

Rememeber that we are trying to come up with a model to predict
whether someone will purchase or not. We will use the knn() function to
do so, and we will focus on 4 of its arguments that we need to specify.
The first argument is a data frame that contains the training data
set(remember that we don't have the Y here), the second argument is a
data frame that contains the testing data set (again no Y variable), the
third argument is the train.purchase column (Y) that we save earlier, and
the fourth argument is the k (how many neighbors). Let's start with k =
1. knn() function returns a vector of predicted Y's.

library(class)

set.seed (101)

predicted.purchase <- knn(train.data,test.data,train.purchase,k=1)
head (predicted.purchase)

OO WN -

No No No No No No

Introduction to R Programming Machine Learning

Now let's evaluate the model we trained and see our misclassification error
rate.

=

mean (test.purchase !'= predicted.purchase)
0.116
e\t

Choosing K Vatue

N

Let's see what happens when we choose a different K value:

=

predicted.purchase <- knn(train.data,test.data,train.purchase,k=3)
mean(test.purchase != predicted.purchase)
0.073

w N

Interesting! Our Misclassification rate went down! What about k=57

1| predicted.purchase <- knn(train.data,test.data,train.purchase,k=5)
2| mean(test.purchase != predicted.purchase)
3] 0.066

Introduction to R Programming Machine Learning

Should we manually change k and see which k gives us the minimal
misclassification rate? NO! we have computers, so let's automate the
process with a for() loop. A loop in R repeats the same command as much
as you specify. For example, if we want to check for k =1 up to 100, then
we have to write 3 x 100 lines of code, but with a for loop, you just need 4
lines of code, and you can repeat those 3 lines up to as many as you want.
(Note this may take awhile because you're running the model 20 times!)

}

print (error.rate)

1| predicted.purchase = NULL

2| error.rate = NULL

3

4| for(i in 1:20){

5| set.seed(101)

6 predicted.purchase = knn(train.data,test.data,train.purchase,k=i)
7| error.rate[i] = mean(test.purchase != predicted.purchase)

8

9

Introduction to R Programming Machine Learning

Elbow Method

We can plot out the various error rates for the K values. We should see an
“elbow” indicating that we don't get a decrease in error rate for using a
higher K. This is a good cut-off point:

library(ggplot2)

k.values <- 1:20

error.df <- data.frame(error.rate,k.values)

ggplot (error.df ,aes(x=k.values,y=error.rate)) + geom_point()+ geom_line(lty="dotted",color='red
') + theme_bw()

S WN =

Introduction to R Programming Machine Learning

.
®
0.104
i)
&
5 .
8 ;
o -
0.08 :
.
.'.
‘..
0.06 4
BT BN e e e . K EEEREL SRR 1
.
. v ;
5 10 15
k.values

Introduction to R Programming

Machine Learning

296/347

Tree Methods

= = - = DA 297/347
Introduction to R Programming Machine Learning

Tree Methods

Imagine that | play Tennis every Saturday and | always invite a friend to
come with me. Sometimes my friend shows up, sometimes not. For him it

depends on a variety of factors, such as: weather, temperature, humidity,
wind etc..

| start keeping track of these features and whether or not he showed up to
play with me

Introduction to R Programming Machine Learning

Temparature

il

§

Het

§

Hot

¥

Orvercanst

Cool

Yeos No
Ran ™ No Yes
= = = E DA 299/347
Introduction to R Programming Machine Learnir

Played?

Yo

You

Yo

Yei

[

You
Yos
Yo

Yeu

| want to use this data to predict whether or not he will show up to play.
An intuitive way to do this is through a Decision Tree.

outlook?

overcast

humidity? Yes windy?
<75 >75 Yes No

{
Yes @2 No @ No 2 Yes 3

Yes 1)

Introduction to R Programming Machine Learning

In this tree we have:

@ Nodes - Split for the value of a certain attribute
@ Edges - Outcome of a split to next node
@ Root - The node that performs the first split

@ Leaves - Terminal nodes that predict the outcome

Introduction to R Programming Machine Learning

Intuition Behind Splits

Imaginary Data with 3 features (XY, and Z) with two possible classes.

X \ z Class
1 1 1 A
1 1 0 A
0 0 1 B
1 0 . 0 B
o & = = E

302/347

Introduction to R Programming Machine Learning

Intuition Behind Splits (cont.)

Splitting on Y gives us a clear separation between classes

=17
Yes No
class A class B
2 2

= = = DAt 303/347
Introduction to R Programming Machine Learning

Intuition Behind Splits (cont.)

We could have also tried splitting on other features first:

first split on

oo

Introduction to R Programming Machine Learning

Random Forests

To improve performance, we can use many trees with a random sample of
features chosen as the split.

@ A new random sample of features is chosen for every single tree at
every single split

@ For classification, m is typically chosen to be the square root of p.

Introduction to R Programming Machine Learning

Random Forests

What'’s the point?

@ Suppose there is one very strong feature in the data set. When
using “bagged” trees, most of the trees will use that feature as the

top split, resulting in an ensemble of similar trees that are highly
correlated

@ Averaging highly correlated quantities does not significantly reduce
variance

@ By randomly leaving out candidate features from each split, Random
Forests “decorrelates” the tree, such that the averaging process
can reduce the variance of the resulting model

Introduction to R Programming Machine Learning

Decision Trees and Random Forests

You may need to install the rpart library.

[

install.packages("rpart")
library(rpart)

N

We can then use the rpart() function to build decision tree model:
rpart(formula, data=, method=,control=) where

@ the formula is in the format: outcome ~
predictorl+predictor2+predictor3—+ect.

data= specifies the data frame
method= “class” for a classification tree

“anova” for a regression tree

control= optional parameters for controlling tree growth

Introduction to R Programming Machine Learning

Sample Data

We'll use the kyphosis data frame which has 81 rows and 4 columns.
representing data on children who have had corrective spinal surgery. It
has the following columns:

e Kyphosis-a factor with levels absent present indicating if a kyphosis (a
type of deformation) was present after the operation.

@ Age-in months
@ Number-the number of vertebrae involved

@ Start-the number of the first (topmost) vertebra operated on.

1

tree <- rpart(Kyphosis ~ . , method='class', data= kyphosis)

Introduction to R Programming Machine Learning

Examining Results of the Tree Model

printep(fit) display cp table

plotcp(fit} plot cross-validation results

rsq.rpart(fit) |plot approximate R-squared and relative error for different splits (2 plots). labels are only appropriate for the “anova" method.

print{fit) print results

summary(fit) |detailed results including surrogate splits

plot(fit) plot decision tree

text(fit) label the decision tree plot

post(fit, file=) | create postscript plot of decision tree

1| printcp(tree)

Classification tree:
rpart(formula = Kyphosis ~ ., data = kyphosis, method = "class")

Variables actually used in tree construction:
[1] Age Start

Root nede error: 17/81 = ©.20988

n= 81

CP nsplit rel error xerror xstd
1 0.176471 © 1.00000 1 ©.21559
2 0.919608 1 ©.82353 1 ©.21559
3 0.010000 4 0.76471 1 ©.21559

Introduction to R Programmir Machine Learni

Tree Visualization

1| #install.packages('rpart.plot')
2| library(rpart.plot)
3| prp(tree)
Start >= 8.5
Start >= 14

\;

Age <55

Introduction to R Programming

m]

=

Machine Learning

310/347

Random Forests

Random forests improve predictive accuracy by generating a large number
of bootstrapped trees (based on random samples of variables), classifying
a case using each tree in this new “forest”, and deciding a final predicted
outcome by combining the results across all of the trees (an average in
regression, a majority vote in classification).

install.packages("randomForest")
library(randomForest)

model <- randomForest(Kyphosis ~ ., data=kyphosis)
print(model)

S wWN

Introduction to R Programming Machine Learning

Support Vector Machines

= = - = DA 312/347
Introduction to R Programming Machine Learning

Support Vector Machines

@ Support vector machines (SVMs) are supervised learning models with
associated learning algorithms that analyze data and recognize
patterns, used for classification and regression analysis

@ An SVM model is a representation of the examples as points in space,
mapped so that the examples of the separate categories are divided by
a clear gap that is as wide as possible

@ New examples are then mapped into that same space and predicted
to belong to a category based on which side of the gap they fall on

Introduction to R Programming Machine Learning

Support Vector Machines

Let's show the basic intuition behind SVMs. Imagine the labeled training
data below:

3
.t Ve 0, oy
4 e . . a
Foudtpe 0 300
. . & .. ¥
. RS e, % .
> - . ,, "" -:- 40 oy
) A o . vedh
E ..o.z - :‘ . . :
3 Y ® - L o ~
= - . -
S, 8 L e
. . p
Gl RSt s o
T e S
_6—6 —4 -2] 2 4 [
featurel
=] = = E =

DA 314/347
Introduction to R Programming Machine Learning

We can draw a separating “hyperplane” between the classes

[

feature?
=]

featurel

o = = £ DA 315/347

Introduction to R Programming Machine Learning

But we have many options of hyperplanes that separate perfectly...

featured
[

o = = DA 316/347

Introduction to R Programming Machine Learning

We would like to choose a hyperplane that maximizes the margin between
classes

feature?

o = = £ DA 317/347

Introduction to R Programming Machine Learning

3

The vector points that the margin lines touch Support Vectors

feature?
=

featurel

= = = = DA 318/347
Introduction to R Programming Machine Learning

Example - Support Vector Machine

Building the Model
We'll need the e1071 library

1| install.packages("el1071")

2| library(e1071)

3

4| model <- svm(Species ~ ., data=iris)
5| summary (model)

Call:
svnCfornula = Species ~ ., data = iris)

Parameters:
SVWM-Type: C-classification
SVM-Kernel: radial
cost: 1
ganma: .25

Number of Support Vectors: 51

(82z21)

Number of Classes: 3

Levels:
setosa versicolor virginica

[m] = =

319/347
Introduction to R Programming Machine Learning

Example Predictions

We have a small data set, so instead of splitting it into training and
testing sets (which you should always try to do!) we'll just score out
model against the same data it was tested against:

1| predicted.values <- predict(model,iris[1:4])
2| table(predicted.values,iris[,5])

3

4| predicted.values setosa versicolor virginica
5| setosa 50 0 0

6| versicolor 0 48 2

7| virginica 0 2 48

Introduction to R Programming Machine Learning

Advanced - Tuning

We can try to tune parameters to attempt to improve our model, you can
refer to the help() documentation to understand what each of these
parameters stands for. We use the tune function:

2 /

tune.results <- tune(svm,train.x=iris[1:4],train.y=iris[,5],kernel='radial', ranges=1list(cost
=10"(-1:2), gamma=c(.5,1,2)))

4| summary (tune.results)

w

Introduction to R Programming Machine Learning

Parameter tuming of 'swm':
- sampling method: 18-fold cross walidation
- best parameters:
cost gamma
1 .5

- best performance: 0.03333333

- Detailed performance results:
cost gamma error dispersion

1 @.1 8.5 0.@7333333 0.07281460
2 1.8 9.5 9.03333333 0.06478835
3 1.2 9.5 0.04000000 ©.04661373
4 1@@.0 8.5 0.05333333 0.06885304
5 2.1 1.0 0.0466b667 ©.06324555
6 1.8 1.8 ©.05333333 0.06126244
7 10.8 1.2 0.06000000 ©.05837360
8 100.2 1.0 ©.0000000¢ ©.058373@0
El ©.1 2.9 ©.@7333333 0.0@8577893
@ 1.8 2.2 0.05333333 0.06126244
11 1.2 2.0 ©.04660007 ©.04499657
1z 1e0.@ 2.2 ©.04000000 ©.Q4661373

Introduction to R Programmir Machine Learni

We can now see that the best performance occurs with cost=1 and
gamma=0.5. You could try to train the model again with these specific
parameters in hopes of having a better model:

tuned.svm <- svm(Species ~ ., data=iris, kernel="radial", cost=1, gamma=0.5)
summary (tuned.svm)

tuned.predicted.values <- predict(tuned.svm,iris[1:4])
table(tuned.predicted.values,iris[,5])

tuned.predicted.values setosa versicolor virginica
setosa 50] 0
versicolor [48 2
virginica 0 2 48

©O~NOU A WN R

Looks like we weren't able to improve on our model! The concept of
trying to tune for parameters by just trying many combinations in
generally known as a grid search. In this case, we likely have too little data
to actually improve our model through careful parameter selection.

Introduction to R Programming Machine Learning

K Means Clustering

= = - = DA 324/347
Introduction to R Programming Machine Learning

K Means Clustering

K Means Clustering is an unsupervised learning algorithm that will
attempt to group similar clusters together in your data.

So what does a typical clustering problem look like?

Cluster similar documents

°
@ Cluster customers based on features
@ Market segmentation

°

Identify similar physical groups

Introduction to R Programming Machine Learning

The overall goal is to divide data into distinct groups such that
observations within each group are similar

Introduction to R Programming Machine Learning

K Means Clustering Algorithm

@ Choose a number of Cluster “K"

@ Randomly assign each point to a cluster

@ Until clusters stop changing, repeat the following:
» For each cluster, compute the cluster centroid by taking the mean

vector of points in the cluster
» Assign each data point to the cluster for which the centroid is the

closest

Introduction to R Programming Machine Learning

Choosing a K value

@ There is no easy answer for choosing a “best” K value

@ One way is the elbow method
First of all, compute the sum of squared error (SSE) for some values of k
(for example 2,4,6,8, etc.)

The SSE is defined as the sum of the squared distance between each
member of the cluster and its centroid

Introduction to R Programming Machine Learning

Choosing a K value (cont.)

o If you plot k against the SSE, you will see that the error decreases
as k gets larger; this is because when the number of cluster
increases, they should be smaller, so distortion is also smaller

@ The idea of the elbow method is to choose the k at which the SSE
decreases abruptly

@ This produces an “elbow effect”in the graph, as you can see in the
following picture:

Note: Generally, K must be provided by the user.

Introduction to R Programming Machine Learning

L
gl LS ——
L " Ll Lo .
T T Y T T T
H 4 L]] w 2 "
Flumbser of Ciitery

= = = = DA 330/347
Introduction to R Programming Machine Learning

Choosing a K value (cont.)

The R function fviz_nbclust() [in factoextra package] provides a
convenient solution to estimate the optimal number of clusters.

library(factoextra)

data("USArrests")

df <- scale(USArrests)

fviz_nbclust(df, kmeans, method = "wss") + geom_vline(xintercept = 4, linetype = 2)

B WN

Introduction to R Programming Machine Learning

Optimal number of clusters

200

150

=)
S

aienbg Jo WNS UGN €101

50

Number of clusters k

332/347

Machine Learning

Introduction to R Programmi

Example - K Means Clustering

Usually when dealing with an unsupervised learning problem, its difficult to
get a good measure of how well the model performed. For this example,
we will use data from the UCI archive based off of red and white wines
(this is a very commonly used data set in ML).

We will then add a label to the a combined data set, we'll bring this label
back later to see how well we can cluster the wine into groups.

Data: http://archive.ics.uci.edu/ml/
machine-learning-databases/wine-quality/

Introduction to R Programming Machine Learning

http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

-

dfl <- read.csv('winequality-red.csv',sep=';")
2| df2 <- read.csv('winequality-white.csv',sep=';")

Now add a label column to both dfl and df2 indicating a label 'red’ or
'white'.

2| df1$label <- sapply(dfi$pH,function(x){'red'})
3| df2$label <- sapply(df2$pH,function(x){'white'})

Combine dfl and df2 into a single data frame called wine

1| wine <- rbind(df1,df2)

Introduction to R Programming Machine Learning

Building the Clusters

-

wine.cluster <- kmeans(wine[1:12], 2)
print(wine.cluster$centers)
print(wine.cluster$cluster)

w N

Evaluating the Clusters

You usually won't have the luxury of labeled data with KMeans, but let’s
go ahead and see how we did! Use the table() function to compare your
cluster results to the real results. Which is easier to correctly group, red or
white wines?

table (wine$label,wine.cluster$cluster)

red 1515 84

1
2
3 1 2
4
5| white 1310 3588

Introduction to R Programming Machine Learning

We can see that red is easier to cluster together. There seems to be a lot
of noise with white wines, this could also be due to "Rose” wines being
categorized as white wine, while still retaining the qualities of a red wine.

It's important to note here, that K-Means can only give you the
clusters, it can’t directly tell you what the labels should be, or even
how many clusters you should have, we are just lucky to know we
expected two types of wine. This is where domain knowledge really comes
into play.

Introduction to R Programming Machine Learning

We can also view our results by using fviz__cluster. This provides a nice
illustration of the clusters. If there are more than two dimensions
(variables) fviz_cluster will perform principal component analysis (PCA)
and plot the data points according to the first two principal components
that explain the majority of the variance.

=

library(factoextra)
fviz_cluster (wine.cluster, data = wine[1:12])

N

Introduction to R Programming Machine Learning

Cluster plot

4381

10-
14362634

g .. % 2857
- gggg 3448 328 . cluster
g §7069 4238, S [o]¢
= ‘ (4]
a

0-

5-

o
Dim1 (25.3%)

= = = = DA 338/347

Introduction to R Programming Machine Learning

Exercise

= = = = DA 339/347
Introduction to R Programming Machine Learning

Linear Regression Project

For this project you will be doing the Bike Sharing Demand Kaggle
challenge
(https://www.kaggle.com/c/bike-sharing-demand/data). You
must predict the total count of bikes rented during each hour.

The data has the following features:
@ datetime - hourly date 4 timestamp
@ season - 1 = spring, 2 = summer, 3 = fall, 4 = winter
@ holiday - whether the day is considered a holiday

o workingday - whether the day is neither a weekend nor holiday

Introduction to R Programming Machine Learning

https://www.kaggle.com/c/bike-sharing-demand/data

@ weather :

@ Clear, Few clouds, Partly cloudy, Partly cloudy

@ Mist + Cloudy, Mist 4+ Broken clouds, Mist + Few clouds, Mist

© Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light
Rain + Scattered clouds

© Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

temp - temperature in Celsius

atemp - "feels like" temperature in Celsius

humidity - relative humidity

windspeed - wind speed

casual - number of non-registered user rentals initiated

registered - number of registered user rentals initiated

count - number of total rentals

Introduction to R Programming Machine Learning

Support Vector Machines Project

For this project we will be exploring publicly available data from
LendingClub.com. Lending Club connects people who need money
(borrowers) with people who have money (investors). Hopefully, as an
investor you would want to invest in people who showed a profile of having
a high probability of paying you back. We will try to create a model that
will help predict this.

Lending club had a very interesting year in 2016, so let's check out some
of their data and keep the context in mind. This data is from before they
even went public.

We will use lending data from 2007-2010 and be trying to classify and
predict whether or not the borrower paid back their loan in full. You can
download the data from here
https://www.lendingclub.com/info/download-data.action

Introduction to R Programming Machine Learning

https://www.lendingclub.com/info/download-data.action

Here are what the columns represent:

@ credit.policy: 1 if the customer meets the credit underwriting criteria
of LendingClub.com, and 0 otherwise.

@ purpose: The purpose of the loan (takes values "credit_card”,
"debt__consolidation”, "educational”, "major_purchase”,
"small_business”, and "all_other”).

@ int.rate: The interest rate of the loan, as a proportion (a rate of 11%
would be stored as 0.11). Borrowers judged by LendingClub.com to
be more risky are assigned higher interest rates.

@ installment: The monthly installments owed by the borrower if the
loan is funded.

@ log.annual.inc: The natural log of the self-reported annual income of
the borrower.

o dti: The debt-to-income ratio of the borrower (amount of debt
divided by annual income).

o fico: The FICO credit score of the borrower.

Introduction to R Programming Machine Learning

@ days.with.cr.line: The number of days the borrower has had a credit
line.

@ revol.bal: The borrower's revolving balance (amount unpaid at the
end of the credit card billing cycle).

@ revol.util: The borrower's revolving line utilization rate (the amount
of the credit line used relative to total credit available).

@ inq.last.6bmths: The borrower's number of inquiries by creditors in the
last 6 months.

@ deling.2yrs: The number of times the borrower had been 30+ days
past due on a payment in the past 2 years.

@ pub.rec: The borrower's number of derogatory public records
(bankruptcy filings, tax liens, or judgments).

Introduction to R Programming Machine Learning

Tree Methods Project

For this project we will be exploring the use of tree methods to classify
schools as Private or Public based off their features.

Let's start by getting the data which is included in the ISLR library, the
College data frame.

Introduction to R Programming Machine Learning

A data frame with 777 observations on the following 18 variables.

@ Private A factor with levels No and Yes indicating private or public
university

Apps Number of applications received

Accept Number of applications accepted

Enroll Number of new students enrolled
ToplOperc Pct. new students from top 10
Top25perc Pct. new students from top 25
F.Undergrad Number of fulltime undergraduates
P.Undergrad Number of parttime undergraduates
Outstate Out-of-state tuition

Introduction to R Programming Machine Learning

Room.Board Room and board costs

Books Estimated book costs

Personal Estimated personal spending

PhD Pct. of faculty with Ph.D.'s

Terminal Pct. of faculty with terminal degree
S.F.Ratio Student/faculty ratio

perc.alumni Pct. alumni who donate

Expend Instructional expenditure per student
Grad.Rate Graduation rate

Introduction to R Programming Machine Learning

