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ABSTRACT

There are many large infrastructures that instrument every-
thing from network performance metrics to user activities.
However, the collected data are generally used for long-term
planning instead of improving reliability and user experi-
ence in real time. In this paper, we present our vision of
how such collections of data can be used in real time to
enhance the dependability of cellular network services. We
first discuss mitigation mechanisms that can be used to im-
prove reliability, but incur a high cost which prohibit them
to be used except in certain conditions. We present two case
studies where analyses of real cellular network traffic data
show that we can identify these conditions.

Categories and Subject Descriptors

C.4 [Performance of Systems]|: reliability, availability,
and serviceability

General Terms
Reliability
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1. INTRODUCTION

There are many examples of large infrastructures that
instrument everything from regular network performance
metrics to detailed user activities. For example, cellular
networks collect information about bandwidth usage, han-

dovers, signal strength, connection/disconnection events, etc.

to analyze network performance. Web analytics record user
clicks, location, page visit time, page dwell time, etc., to
help page owners understand their traffic. The collection of
these large quantities of analytics from large infrastructures
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and their use for understanding user behaviors and trends
has been called “big data”.

Unfortunately, today, these measurements are not used
in meaningful ways online, if at all. Instead, they are of-
ten used to do offline analysis. In this paper, we explore
whether real-time data collected from detailed instrumen-
tation of large scale infrastructures can be used to provide
real-time services that improve the dependability of the in-
frastructures and through this, the experience for users using
them.

Specifically, this paper presents our vision of how big data
analytics can be used in real time to enhance the depend-
ability of cellular network services. We demonstrate how big
data can help in the design of adaptive techniques to reduce
the incidence of voice or data disconnections in cellular net-
works and mitigate their effect when they do occur. We show
that such mitigation mechanisms come with a cost that pro-
hibits them from being turned on all the time. In order for
them to be beneficial, real-time data analysis is necessary
because network disconnections depend not only on static
factors (such as user locations that are prone to bad network
connectivity), but also on dynamic factors (such as current
level of congestion in the cell, available radio resources, etc.).
We analyze real data collected by a major cellular network
and show that we can build a model that identifies condi-
tions that are likely to lead to network disconnections where
real time mitigation mechanisms are beneficial.

2. BACKGROUND

2.1 Network Architecture

Figure 1 shows our proposed architecture for the LTE net-
work. The mobile device, called User Equipment (UE), is
connected to a cell sector (which we will refer to as cell) in
a base station, called eNodeB. A physical base station can
have multiple sectors, potentially covering different regions.
Cellular traffic from the eNodeB passes through Serving
Gateway (S-Gateway) and Packet Data Network Gateway
(PDN-Gateway) to external network (e.g., the Internet).

In order to identify (dynamic) conditions that can pre-
dict voice or data drops with sufficient confidence, we add
two components in the proposed architecture as shown in
Figure 1: offline training and online predictor. The offline
training component takes data from eNodeBs and construct
a machine learning classifier for a specific prediction task.
Due to changing network conditions over time, this offline
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Figure 1: Diagram of the proposed architecture.

training needs to be repeated often (e.g., every day). The
learned classifier becomes the online predictor, which makes
predictions using real-time data from the eNodeB. When the
event of interest occurs (e.g., probability of a drop exceeds
the threshold), the online predictor sends a notification to
the component(s) responsible for initiating the mitigation
actions. This could be the mobile device itself (e.g., to initi-
ate precaching), or a component in the network (e.g., switch
to older technology) or both. In case of the device, the noti-
fication is first sent to the Service API in the device, which
dispatches it to applications that have registered to receive
that particular type of notifications.

In this study, we focus on one type of failures: abnormal
disconnections (also referred to as “drops”). In this work, ab-
normal disconnections are defined as abnormal release of Ra-
dio Access Bearer (RAB) or Radio Resource Control (RRC)
connection [5]. Before performing any voice call or data
communication, a phone first needs to establish an RRC
connection. This is followed by a RAB connection, which
assigns essential network resources to the user device based
on the quality of service required by the specific application.
Since different applications can have different QOS require-
ments, a single device may have multiple RAB connections,
but only a single RRC connection at any given time. Our
first case study focuses on predicting the failures, while the
second case study focuses on predicting how long the failure
will last (referred to as “drop duration”), given that a failure
has occurred.

2.2 Mechanisms that Improve Reliability

Before describing the offline training and online predic-
tor components, we show that the various techniques that
can be used to mitigate the effects of possible data or voice
disconnections incur some cost. Hence it is important to
update offline classifier regularly and perform prediction us-
ing real time data to identify conditions that can lead to
abnormal connection drops as accurately as possible.

Switching to Older Technology: Since newer Radio
Access Technologies (RATSs) provide higher bandwidth and/or
new features, users tend to prefer them over older technolo-
gies. This leads to higher congestion, as each RAT uses
its own base stations and other infrastructures. Thus, older
RATSs generally have higher reliability than newer ones. The
cost of using older technology is the lower available band-
width, which could be more important than the reliability of
the connection, depending on the application. For example,
a video streaming application may be able to mask a dis-

connection by buffering the video before it occurs. On the
other hand, when making a voice call in a congested region,
it may be better to use an older, less congested RAT despite
the drop in audio quality.

Prefetching: Prefetching can be done for web browsing
(link prefetching) as well as audio/video streaming (down-
loading the stream at maximum capacity). If used early
enough before a degradation of service, and the degradation
does not last very long, it can mask the disconnection com-
pletely. Otherwise, it still allows the user to access more
content before being affected by the degradation of service.
This method carries a cost of wasted bandwidth and energy
if left on longer than necessary or all the time.

Voice Call Auto-Reconnecting: Currently, if a discon-
nection occurs during a voice call, the call is simply dropped.
It is straightforward to add a functionality of automatic re-
connection to voice calls, which will make reconnection more
seamless for both parties. However, because most of the
time, a drop lasts rather long, this would inconvenience the
user as well as the other party of the call while he or she
waits.

While the mechanisms mentioned above do improve relia-
bility and/or user experience, they all come with a cost that
prohibits them from being used all the time. What we need
is a way to determine the conditions (e.g., how likely a drop
is going to occur in the immediate future), the temporal na-
ture of the failure (e.g., how long the drop is expected to
last), take into account the device specific information (e.g.,
type of applications the user is running), and use one of the
mechanisms only when the benefits outweigh the costs. In
the next section, we will show how big data analytics can be
used to identify these conditions.

3. CASE STUDIES

In this section we explore how we can identify condi-
tions needed by the mitigation mechanisms described in Sec-
tion 2.2 with enough confidence. We focus on two specific
problems: predicting drops and predicting drop duration.

3.1 Data Source

We use real-world 3G cellular traffic data from a tier-1
U.S. cellular network collected on or after June 5, 2012. Al-
though the 3G network has slightly different architecture
from LTE as described in section 2.1, the prediction mech-
anism described here can be applied for LTE networks as
well. Data are collected at the NobeB (which is analogous
to LTE’s eNodeB) during its normal operation, and aggre-
gated at the Radio Network Controller (RNC), which man-
ages multiple NodeB’s. All devices and user identifiers are
anonymized for our analysis, and packet inspection was not
used. The dataset contains various low-level performance
events, each of which contains common metrics as well as
its own set of metrics. Common metrics include timestamp,
user’s International Mobile Subscriber Identity (IMSI), cell
IDs of the cells the device is connected to. Examples of
logged events include connections/disconnections, cell load,
primary cell of each UE, and download and upload through-
put. Once a model is trained, the original data used to train
it are discarded.

3.2 Methodology

Because different events have different reporting interval,
we need to combine them by computing aggregate functions



07 /

Cumulative Probability
o
@

0.4 /
03

ox 1x 2x 3x ax X 6X 7 £ 9 10X
Cell Drop Rate (relative to the median)

Figure 2: Cumulative distribution plot of cell drop rate.

(e.g., average, count, last report value) of the values within a
sliding time window. Specifically, for each window and each
metric, we compute 10 aggregate functions of that metric
values within the window. If no value is reported within the
window, we report it as a special missing value. Aggregated
values across all metrics corresponding to the same window
form a data point, used to train and evaluate classifiers. For
the task of predicting drops, a data point is assigned the
“failure” class label if the window it corresponds to precede a
failure by up to 20 seconds. It is assigned the “normal” class
label otherwise. For the task of predicting drop durations,
since we are only making predictions when a drop has just
occurred, we only include windows that lead up to, but not
including, the drop. We use window size of 10 seconds. We
select 12 events with 250 metrics altogether, leading to 2,500
attributes after computing the aggregates.

We use two machine learning algorithms for our data anal-
ysis: AdaBoost and Support Vector Machine (SVM). We use
Weka’s implementation of AdaBoost, with decision stump as
the base classifier [4]. For SVM, we use LIBSVM implemen-
tation [2]. All prediction accuracy results are generated
using separate train and test datasets, each corresponding
to one day of operation.

3.3 Predicting Drops

In the first case study, we look at whether we can identify
conditions correlated with disconnections. For this purpose
we consider disconnections of both voice calls and data con-
nections. There are many ways to partition the models; we
can build a single global model, or train a separate model for
each cell sector, or build a personalized model for each user.
We found that accuracy of personalized models suffer from
the lack of sufficient amount of data, because for most users,
there is not enough failure data to build a good model.

The question then becomes, are the reliability character-
istics of each cell different from each other enough to justify
partitioning the models by cell? To answer this question,
we look at the drop rate of each cell from the same time
window. For this study, we define the drop rate to be the
number of drops during a period divided by the amount of
data traffic used across all users during the same period.

Figure 2 shows the cumulative distribution of cell drop
rate from the operational period of April 5 to June 24, 2013.
Each cell’s drop rate is shown relative to the median drop
rate among these cells. The drop rate ranges from zero to
107 times the median. 26% of all cells have no drop at all
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Figure 3: Drop prediction accuracy as a function of weight
parameter.

Al A2 Fraction of failure data points
not greater not greater 0.51X
not greater greater 2.04X
greater not greater 1.82X
greater greater 40X
Any Any X

Table 1: Class distribution of data points from one cell
given top two attributes compared to the overall fraction of
failure data points (labeled X). ‘greater’ and ‘not greater’
refers to the outcome of the comparison between the value
and the learned threshold.

during this period. From the figure, we can see that there is
a high variation among the cells. Thus, it is reasonable to
partition the models by cell sector.

We separate the data by cell and use AdaBoost to train
a model for each cell. Due to the amount of data, we need
to sample and include only a fraction of users for each cell.
Figure 3 shows the prediction accuracy in terms of precision
and recall. The weight parameter is a tunable parameter
that controls the relative cost of a false positive versus the
cost of a false negative (higher weights mean false negatives
cost more). Recall and precision have their conventional
meaning. Recall is the proportion of actual failure cases
that the classifier is able to predict. Precision is the fraction
of actual failure cases to the number of predicted failures.
Thus, recall is the complement of false negative rate and
precision is the complement of false positive rate.

While the precision of roughly 25% might seem low, it
is enough for applications where maintaining a connection
is essential. Specifically, when the classifier predicts that a
drop will occur, there is a probability of 25% that a drop
will actually occur. If we initiate a mitigation action based
on this prediction, 25% of the time it would be the correct
course of action, while 75% of the time the costs of the mit-
igation action are incurred unnecessarily. Depending on the
action, the costs may be lower available bandwidth, wasted
energy and bandwidth, or something else. Our experience
shows that prediction accuracy varies based on the opera-
tional period from which the data used to train and eval-
uate the models are collected. Also, there is potential for
the accuracy to be improved, for example by using a better
sampling method, including more types of logged events in
the data analysis, or extracting better features. Next, we
illustrate how the attributes used by the classifier correlate
to the failures.
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Figure 4: Plot of drop rate of four randomly-picked cells
on each day from April 5 to June 24, 2013, compared to the
median drop rate.

Each classifier is different, but we found that many clas-
sifiers have the same top two attributes that influence the
prediction decision the most: 1) the number of UE’s uplink
throughput records with value of zero within a window, and
2) the sum of the cell’s transmit power across all records
within a window. We will refer to them as Al and A2,
respectively. Table 1 shows the class distribution of data
points from the test dataset from one cell for each com-
bination of outcomes of comparisons between the attribute
value and the threshold learned by the Decision Stumps cor-
responding to Al and A2. The fraction of failure data point
for each combination is shown in relative to the overall frac-
tion of failure data points. We can see that when either If
either Al or A2 (but not both) exceeds its threshold, the
fraction roughly doubles. However, when both Al and A2
exceed its threshold, the fraction becomes 40 times higher.
Since the throughput is reported every 2 seconds, even if
it is zero, the fact that there are many records with upload
throughput of zero indicates that there is some problem with
the communication. The cell’s transmit power is related to
the current load on the cell, which is correlated with drops.

Next, we explore how the conditions change over time,
as this will determine how often the classifiers need to be
retrained. We randomly pick four cells and plot their drop
rate relative to the median drop rate during the period from
April 5 to June 24, 2013 in Figure 4. We can see that the
drop rate of some cells change significantly over time, and
at different time from other cells. In order to capture these
changes in conditions, the models need to be retrained fre-
quently.

3.4 Predicting Drop Duration

Although related, predicting drop duration is a separate
problem from predicting connection drops. The question
we ask here is, given that a drop has occurred, what is the
earliest time that the connection can be reestablished. We
will refer to the duration between these two events as ‘drop
duration’. This could depend on the user’s mobility pattern
and environmental conditions, among other factors. This
is important for guiding if a mitigation action is likely to
be useful — a short drop duration would mean that it is
acceptable to pause the call and then resume it when the
connection can be reestablished, while a long drop duration
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Figure 5: Drop duration prediction accuracy as a function
of weight parameter for SVM and AdaBoost. Higher weight
means false negatives cost more, relative to false positives.

would mean that it is better to simply drop the call.

Unfortunately, we cannot directly determine the earliest
time that a reconnection attempt would be successful from
our data source. Specifically, the data source only reports
successful reconnections (since the network does not know
about unsuccessful reconnections). The 3GPP standard does
not require the device to attempt to reconnect after a discon-
nection. Thus, an absence of successful reconnection does
not imply that an attempt would have been unsuccessful.
However, this is the best method available to us to estimate
the drop duration and we use it with an understanding that
this is an upper bound of the true drop duration.

Since the goal of drop duration prediction is to make a de-
cision whether to hold the voice call while reconnections are
being attempted, instead of predicting the drop duration, we
predict whether the drop will be short or long, determined
by a threshold ¢ = 10 seconds. This decision needs to be
agreed on by both the network and the disconnected party.
However, no communication is possible once a device is dis-
connected. Thus, during a voice call, the online predictor
needs to keep analyzing real-time data and keep the devices
updated about the decision, so that once a drop occurs, they
agree on whether to hold the call and reconnect.

Due to variability of drop duration across cells, the classi-
fiers should ideally be partitioned by cell. However, due to
time constraints, we only have results from a single global
classifier used for all cells. Figure 5 shows the accuracy of
drop duration prediction for SVM and AdaBoost with dif-
ferent values of weight parameter. Because the two algo-
rithms have different ranges of weight parameter, the actual
values are not shown on the axis. Here, recall is the pro-
portion of short drops that the classifier is able to predict
correctly. Precision is the fraction of actual short drops to
the number of drops predicted to be short. AdaBoost per-
forms slightly better than SVM, achieving both recall and
precision of roughly 45%. We found that the metric that
most correlates with short drops is download throughput,
with high throughput correlated with short drops.

4. RELATED WORK

There are several proposals for managing faults in cellular
networks. However, much of the work focuses on detection
of failures [3, 6, 8, 9], and identification of root cause of the
failure [1, 10]. Their goal is different from ours, which is
to predict failures and proactively try to prevent them, or



lessen the effects of failures on user experience in the short
term.

Javed et al. propose a machine learning framework for
predicting handovers based on data available at the hand-
set [7]. The goal is to notify applications before a short-term
disruption in the service due to the handovers so that they
can modify their behavior to counter it. This is similar in
spirit to our work, although we are not limiting ourselves to
handovers. Furthermore, the wealth of data collected at the
network provides much more information than data avail-
able at the handset. This enables us to predict events that
could not have been predicted otherwise.

S.  CONCLUSIONS AND CHALLENGES

This paper presents our vision of how big data analytics
can be used in real time to improve dependability and user
experience. We demonstrated this by analyzing real cellular
traffic data from a major cellular network and showed that
we can construct a model that predicts drops and drop dura-
tion in real time with enough accuracy to enable mitigation
actions to be used.

Challenges There are several challenges that need to be
solved before such real-time data analysis and mitigation
actions within the domain of cellular network become feasi-
ble:

Real-time Data Access: Real-time data access is not
available for the majority of events logged by cellular net-
work due to reasons including storage requirements and the
need to protect user privacy.

Data Volume: Due to the amount of data and number of
users involved, such real-time data analysis requires efficient
data streaming and processing systems close to the data
source.

Lack of unified framework: Because many mitigation
actions are application-specific, and some must be initiated
by the device, there must be a standard way for the network
to send notifications to the device, and for applications to
express interests in receiving such notifications.
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