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Abstract—Enhancers are short DNA sequences that 

modulate gene expression patterns. Recent studies have shown 

that enhancer elements could be enriched for certain histone 

modification combinatorial codes, leading to interest in 

developing computational models to predict enhancer 

locations. Here we present EP-DNN, a protocol for predicting 

enhancers based on chromatin features, in two different cell 

types, a human embryonic (H1) and a human lung fibroblast 

(IMR90) cell line. Specifically, we use a deep neural network 

(DNN)-based architecture to extract enhancer signatures. We 

train EP-DNN using distal p300 binding sites, as enhancers, 

and TSS and random non-DNase-I hypersensitivity sites, as 

non-enhancers. We find that EP-DNN has superior accuracy 

relative to other state-of-the-art algorithms, such as DEEP-EN 

and RFECS, and also scales well to large number of 

predictions. Then, we surmount the problem that DNN results 

are not interpretable and develop a method to interpret which 

histone modifications are important, and within that, which 

spatial features proximal or distal to the enhancer site, are 

important. We uncover that the important histone 

modifications vary between cell types. Further, whether the 

important features are clustered around the enhancer peak or 

more spread out also differs among the different histone 

modifications. Thus, we bring forth a new paradigm for 

automatically determining the important features and the 

important histone modifications, rather than the current 

computational standard of using the same fixed number of 

features from all the histone modifications for all cell types. 

Our results have implications for computational scientists who 

can now do feature selection for their classification task and 

for biologists who can now experimentally collect data only for 

the relevant histone modifications. 

Keywords—Enhancer predictions, deep neural networks, 

histone modification signatures, DNN interpretability. 

I. INTRODUCTION 

Distinct cell phenotypes are largely modulated by unique 
gene expression patterns, stemming from the interaction of 
the genome with its environment. Such crosstalk is mediated 
by specialized cis-regulatory modules (CRMs), including 
enhancers (1), silencers, promoters, and insulators (2-4). 
Among these, enhancers constitute the most prominent class 
of gene expression regulators. Early experiments indicated 
that sequences located far from the gene promoters are often 
responsible for mediating gene transcription (5). Such 
genetic elements are called enhancers and they are defined as 
short DNA sequences regulating temporal and cell-type 
specific basal gene-transcription levels at distances ranging 

from hundreds of bases to, in rare cases, even megabases (6-
8). Knowing their properties, regulatory activity, and 
genomic targets is crucial to the functional understanding of 
cellular events, ranging from cellular homeostasis to 
differentiation. Recent genome-wide investigation of 
epigenomic marks has indicated that enhancer elements 
could be enriched for certain epigenomic marks, such as 
complex, albeit predictive, histone combinatorial grammar 
codes. Our efforts in this paper are motivated by these recent 
advances in epigenomic profiling methods, which have 
uncovered enhancer-associated chromatin features in 
different cell types and organisms (9-12). Through analysis 
of the prior approaches, including experimental runs, we 
conclude that the difficulty of computationally predicting 
enhancer sites is because of two primary factors. First, they 
did not use the full spectrum of available features, i.e., all the 
histone modifications and their enrichment values in a wide 
region around the hypothesized enhancer site, denoted by the 
enhancer peak. Second, they did not use a highly expressive 
classifier, one that can extract the distinguishing features 
from a complex landscape.  

We address both of these problems, the first by starting with 
an (almost) exhaustive set of features and then doing feature 
selection through an innovative mechanism, to identify a top-
k most relevant features

1
. For the second shortcoming, we 

use recent state-of-the-art Deep Learning methods and 
develop a deep neural network (DNN)-based architecture 
(13-15) to predict the presence and types of enhancers in the 
human genome, “learning” from the combinatorial histone 
modification codes. We call our system “EP-DNN”, an 
acronym for “Enhancer Prediction through a Deep Neural 
Network”. Our sanity check result shows the improvement in 
validation rate of EP-DNN compared to the two state-of-the-
art computational approaches─RFECS (16) and DEEP-EN 
(17) (Figure 1)

2
. We use the metric “validation rate” instead 

                                                           
1
 Empirically, the full set has 480 features and the value of k is 150 for two 

distinct human cell lines─H1 and IMR90. 
2 For the dataset, we used the H1 and IMR90 datasets that were generated 

as part of the NIH Roadmap Epigenome Project and that have been 

released to the public prior to publication 
(http://www.genboree.org/epigenomeatlas/multiGridViewerPublic.rhtml). 

Briefly, 24 chromatin modifications in human embryonic stem cell (H1) 

and primary lung fibroblast cells (IMR90) were generated by the Ren lab 
and deposited under the NCBI GEO accession number GSE16256. 

Additionally, two replicates of H3K9me3 datasets deposited under GEO 

accession numbers GSM818057 and GSM42829 were used. Genome-wide 

 



of the more common “recall” and “precision” metrics 
because the ground truth is not known for some data 
samples. Hence, based on prior work (16), we use validation 
rate, which is defined as the percentage of predicted 
enhancers overlapping with DNase-I hypersensitivity sites 
(DHS) and binding sites of p300 and a few sequence-specific 
transcription factors (TFs) known to function in each cell 
type (true positive markers, TPMs).  

 

Looking further into the challenges of computational 
identification of enhancers, we identify several reasons (18). 

First, the search space for enhancers is large¾billions of 

DNA base pairs¾scattered across 98% of the non-coding 
genome. Second, while enhancers regulate genes in cis, they 
do not display distinct locational or orientation-centric 

signals relative to the genes that they regulate¾potentially 
located upstream, downstream, or even in introns of the 
genes that they modulate, often regulating multiple genes 
(19). Enhancers function at a distance from their target genes 
via chromatin loops that bring the enhancers and target genes 
into proximity (20, 21), or via direct eRNA transcription 
from the enhancer DNA sequences (22). 

Biological experiments for enhancer identification 

Several high-throughput experimental approaches exist to 
identify enhancers (23, 24). The first is mapping specific 
transcription factor binding sites (TFBS) through ChIP-seq. 
This stems from the fact that short enhancer DNA sequences 
serve as binding sites for TFs, and the combined regulatory 
cues of all bound TFs determine ultimate enhancer activity 
(25, 26). However, this approach requires the knowledge of 
the TF subset that is not only expressed but also occupies all 
active enhancer regions in the spatio-temporal setting, such 
as in a specific cell type at a point of time (27). Therefore, 

                                                                                                  
binding data for p300 in H1 and IMR90, and transcription factors NANOG, 
SOX2, and OCT4 in H1 were generated in the Ren lab using ChIP-seq and 

deposited under accession numbers GSE37858, GSE18292, and GSE17917 

respectively. 

predicting enhancer activity from sequence-based 
information, such as from the TF motif content, remains 
challenging (26, 28). In addition, this approach is limited by 
the lack of available ChIP-grade antibodies that specifically 
recognize these subsets. The second approach is based on 
mapping transcriptional co-activator binding sites (e.g., 
histone acetyltransferase HAT, p300) (29, 30). However, not 
all enhancers are marked by a set of co-activators and also 
often lack available ChIP-grade antibodies. The third 
approach relies on identifying open chromatin regions by 
DNase-I hypersensitivity (DHS) mapping (31), which lacks 
specificity due to the fact that the identified regions can 
correspond to other CRMs. Finally, the fourth approach 
involves histone modification signatures produced by ChIP-
seq that consistently mark enhancer regions (16, 32-35). Due 
to their consistency in marking enhancers, we use histone 
modifications to make in-silico predictions of enhancer 
signatures.  

Related Work: Previous Methods based on Histone 
Modifications 

Several computational methods that use histone 
modification signatures to identify enhancer regions have 
been developed. Won et al. proposed the usage of Hidden 
Markov Models (HMMs) to predict enhancers using three 
primary histone modifications (33). Firpi et al. focused on 
the importance of recognizing the histone modification 
signals through data transformation and employed Time-
Delayed Neural Networks (TDNNs) using a set of histone 
marks selected through simulated annealing (34). Fernández 
et al. used Support Vector Machines (SVMs) on an 
optimized set of histone modifications found through Genetic 
Algorithms (35). RFECS (Random Forest based Enhancer 
identification from Chromatin States) improved upon the 
limited number of training samples in previous approaches 
using Random Forests (RFs), in order to determine the 
optimal set of histone modifications to predict enhancers 
(16).  

EP-DNN’s Contributions 

In this paper, we solve the classification problem of 
whether a histone combinatorial code represents an enhancer 
element, or not, using our deep learning-based classifier, EP-
DNN. Our main contributions in this paper are as follows: 

· We have developed an efficient DNN-based classifier to 
identify enhancers in two distinct cell types, namely the 
human embryonic stem cell type (H1) and a primary 
lung fibroblast cell line (IMR90). We demonstrate that 
DNNs work well in extracting features automatically 
from a set of 480 features in 24 histone modifications, 
and then, in predicting enhancers. We take care to 
optimize the DNN while avoiding overfitting on the 
training data. We also show that DNN-based 
classification is much faster than prior computational 
methods, which often use an ensemble of models. 

· We have extended and applied a previous analysis 
method for Neural Networks to work for DNNs to 
identify which features are important, thus solving the 
problem that DNNs are typically not interpretable. Then, 

Figure 1: Comparison of EP-DNN against two state-of-the-art 
computational approaches for prediction of enhancer locations with 
respect to validation rate. 



using a carefully designed approach that avoids the 
combinatorial explosion, we have determined which 
features need to be included in the classifier to obtain 
validation comparable to using the full feature set. In 
doing so, we have pruned the feature space to top-150 
features from the original 480 features. 

· We identify that not all histone modifications are equally 
important, and that the important histone modifications 
are different for the two different cell types, elucidating 
cell-type specific differences in the histone 
combinatorial code. Further, for an important histone 
modification, which subset of its features is important, 
varies from one histone modification to another. Thus, 
in this paper, we introduce a new paradigm where we do 
not have to use a fixed number of features, that is, fixed 
window sizes, for all histone modifications. Rather, we 
zoom into the important histone modifications and the 
important features within these modifications. Thanks to 
our solution, the experimentalists need only collect the 
data for the important histone modifications for any 
given cell type. 

II. METHOD 

A. Overview 

We use histone modification signatures that are known to  
mark enhancer regions, as input features to our classifier in 
order to determine whether a particular region is an enhancer 
or not. There are many possible choices for a classifier for 
predicting which will be the enhancers. In this specific case, 
we could have chosen from many possible options for taking 
the histone modification features and predicting which 
indicate, with high likelihood, the presence of an enhancer. 
“Simple” classifiers include naïve Bayes and Support Vector 
Machine (SVM), and Decision Tree, while relatively more 
complex classifiers include Bayesian Networks, Hidden 
Markov Models, and Neural Networks. Ensemble methods 
that combine multiple base models have also been used in 
prior work─Random Forest, which uses multiple Decision 
Trees, as employed in RFECS (16), and ensemble of SVMs 
as used in DEEP-ENCODE (DEEP-EN (17)). In our work, 
we chose Deep Neural Networks (DNNs), arguably one of 
the more complex classifiers. Our design choice was based 

on the well-known advantages of DNNs¾they provide 
feature extraction abilities without requiring manual feature 
engineering or transformation of the data. Further, they are 
generally less computationally expensive than larger 
ensemble methods that combine multiple algorithms or 
multiple models of the same kind. This has to be weighed 
against the disadvantages of DNNs, none of which are 
insurmountable. The first is that there is a need for suitable 
training of the DNN and the parameter space to explore can 
be quite large. The second is that DNN results are not as 
easily interpretable as say, that of a Decision Tree. We 
mitigate the first problem by performing an extensive 
training with a large amount of data and sweeping through 
the parameter space (the number of layers in the DNN, the 
number of neurons in each layer, the transfer function used) 
to decide on the optimal DNN architecture. We find 
empirically that the optimal DNN architecture does not 

change significantly when we use the subsets of features.  
For the second problem, we employ a method to calculate 
the importance of each input feature based on the learned 
weights. 

Figure 1 shows the comparison against previous methods 
RFECS (16) and DEEP-EN (17) in predicting enhancers in 
H1 cell type and demonstrates the superior prediction 
performance of DNN. 

We give a high level overview of our solution approach in 
Figure 2, in which we show separately the initial training 
phase we use to create an optimal DNN with all features, the 
feature selection phase where useful features are separated 
from the noises, and the prediction phase where we use a 
subset of histone modifications and associated features to 
predict whether a regulatory motif is an enhancer. In the 
training phase, we start by finding the optimal DNN for all 
features. Next, we compute the features’ importance scores 
based on the learned weights in the optimal DNN. The 
features are then sorted by their importance scores and 
multiple DNNs are trained using only the top-k features, for 
varying values of k. We increase k in increments of 10, 
thereby avoiding a combinatorial explosion in the number of 
combinations of features that we need to consider.  A 
subsequent evaluation of the DNNs using validation rate  
identifies the optimal DNN to use for the prediction phase. 

 

Figure 2: High level overview of our solution approach─EP-DNN. 
It shows the training phase, the feature sub-selection, and the final 
evaluation phase with the top-k features.  

B. Optimization of our DNN’s feature space 

The availability and difficulty of obtaining data as well as 
the loading and pre-processing time to read this data 
becomes a significant factor as the input feature space gets 
larger, especially when dealing with big data such as 
epigenomics data. Within the context of enhancer prediction, 
there are generally two approaches to alleviate this problem. 
The first is reducing the number of histone modifications 



used as input to include the minimal amount necessary to 
make accurate predictions. However, the optimal histone 
modification set for each cell type is not well known and 
omitting certain histone modifications can potentially lead to 
a loss of important data. Previous work has pointed out some 
important histone modifications, though it has not rigorously 
justified which modification is important in which cell type. 
Another approach is to reduce the input window size. That is, 
for each histone modification, the range of base pairs used 
for prediction that are adjacent to each particular site being 
predicted can be reduced. However, a window size that is too 
large can include unnecessary noise, while a window size 
that is too small can lead to information loss. This problem is 
compounded by the fact that all prior works have used a 
fixed window size for all histone modifications. In reality, as 
we find through this current study, each modification 
signature contains different areas of significance around a 
particular site (Figure 5).  

We develop the solution of reducing the number of 
features that need to be input to the DNN. In the full 
generality, there are 24 histone modifications and with the 
largest window size from prior works, 20 windows around 
the target site and correspondingly 20 features for each 
histone modification, thus leading to a total of 480 features. 
We posit that only a small fraction of this total number of 
features is important to the classification task, distributed in 
varying proportions, across the combinatorial histone 
modification signatures. To come up with the subset of 
features, we follow a two-step process. 

Step 1: Analyze the weights of the edges in the DNN and 
come up with an approximate ranking of the importance of 
these features (see below for more details). Let us call this 
rank ordered list OL (Ordered List).  

Step 2: Use the validation performance with all 480 
features as the ideal goal (Vopt) and the benchmark. Now, 
perform classification by taking a cumulative group of 10 
features from the rank-ordered list OL. Thus, first start with 
the top-10 features and by running the classifier on 5 
different subsamples of the test set, see what the validation 
rate is. The subsample sets each contain 480K data points, 
and each was drawn randomly from the entire dataset of 
21,247,949 data points without any overlaps. Then, repeat 
the process with the top-20 features, top-30 features, and so 
on. Observe when the validation rate plateaus and check that 
it reaches close to the ideal goal Vopt. Let us say that is 
achieved with the top-k features. That implies that we can 
perform further classification tasks with these k features, 
rather than all 480 features. Empirically, we find that for 
both cell lines─H1 and IMR90─the value of k is 150. Thus, 
this leads to a significant reduction in the feature size that our 
DNN needs to consider.  

C. Interpretation of DNN results 

We present a way to use the learned DNN connection 
weights to calculate the importance of each input feature and 
determine not only the histone modifications, but also the 
range of signal features within these histone modifications 
that influence enhancers. These contributions taken together 
make DNNs more interpretable than other methods, and 

solve the aforementioned problems with DNNs. The trained 
weights contain information regarding the histone 
modification feature inputs and enhancers. In order to extract 
this information, we took a previous feature selection method 
(36) that determines feature importance from shallow Neural 
Network architecture connection weights, then expanded it 
for deep architectures and applied it to our initial-480 feature 
DNN. The equation used is given below, where i is a neuron 
whose importance score we are calculating, and Ni is the set 
of neurons in the next layer (closer to output) that i feeds 
into. The importance score of neuron i, denoted Si, is 
computed as  

 

Beginning with the output neuron’s importance scores set 
to 1, the importance scores are distributed to each neuron in 
the previous layers to find its importance score, in a 
backpropagation-like manner, down the DNN till the input 
features are reached. With only 1 output in our DNN, we 
further normalize each neuron’s weights to sum to 1, such 
that the final resulting feature importance scores sum to 1.  

  

III. EXPERIMENTAL APPROACH 

A. Datasets 

We use 24 histone modifications for our enhancer 
prediction task. This choice is dictated by the fact that a 
genomics laboratory has previously generated this data and 
deposited it in the NCBI database under NCBI GEO 
accession number GSE16256. The 24 histone modifications 
are H2AK5ac, H2BK120ac, H2BK12ac, H2BK15ac, 
H2BK20ac, H2BK5ac, H3K14ac, H3K18ac, H3K23ac, 
H3K27ac, H3K27me3, H3K36me3, H3K4ac, H3K4me1, 
H3K4me2, H3K4me3, H3K56ac, H3K79me1, H3K79me2, 
H3K9ac, H3K9me3, H4K20me1, H4K5ac, and H4K91ac, in 
two distinct human cell types, embryonic stem cells (H1) and 
primary lung fibroblasts (IMR90), which were generated as a 
part of the NIH Epigenome Roadmap Project (10, 37). These 
histone modifications comprise a superset of all that are 
hypothesized to be possibly relevant biologically to the 
presence (or absence) of enhancers (16). 

The ChIP-seq reads of these histone modifications give 
us the enhancement level of the modification. These were 
binned into 100 base pair (bp) intervals and normalized 
against their corresponding inputs by using an RPKM (reads 
per kilobase per million) measure (38). Multiple replicates of 
histone modifications were used to minimize batch-related 
differences, and the RPKM-level of the replicates was 
averaged to produce a single RPKM measurement per 
histone. The RPKM-levels were further zero-meaned and 
normalized by the standard deviation (Z-score) of the 
training set. The same mean and standard deviation from the 
training set were used to normalize the test set before 
prediction as well. We will refer to this normalized 
enrichment level of a histone modification as its signature. 
The histone modification signatures of each bin location are 
then used as input to the DNN. 



To train our DNN, we first select distal p300 co-activator 
binding sites through ChIP-seq, then further select though 
overlapping DNase-I hypersensitive sites (DHSs) that are 
distal to TSS, as regions representing enhancers. Of these, 
5,899 p300 peak calls were selected for H1 and 6,000 peaks 
for the IMR90 cell line to represent enhancers for the 
training set. However, p300 co-activators also bind to distal 
Transcription Start Sites (TSS), which are not enhancers. 
Therefore, we also select TSS that overlap with DHS, as well 
as random 100 bp bins that are distal to known DHS or TSS 
to represent non-enhancers. We include 9,299 TSS peaks 
from H1 and 8,000 peaks from IMR90 in our training set to 
distinguish between p300 binding sites that are enhancers 
and TSS that are not, and 31,994 random distal background 
sites were selected for H1 and 34,000 for IMR90 to represent 
non-enhancers for training. 

For testing the DNN, we used all known distal p300 and 
CBP co-activator and Transcription Factor (TF) binding sites 
that overlap with DHS as positive enhancer sites, and TSS as 
non-enhancer sites. 

B. Initial 480-feature DNN 

We trained a fully-connected DNN with 480 inputs, 1 
output, and softplus activation functions for each neuron to 
make enhancer predictions. Each input sample consists of 
twenty-four 20-dimensional vectors of 100 bp bin RPKM-
levels, windowed from -1 to +1 kb at each bin location. 
Training was done in mini-batches of 100 samples through 
stochastic gradient descent backpropagation. To prevent 
overfitting, “dropout” training (39) was applied with a 
dropout rate of 0.5, along with a weight decay of 0.9.  An 
optimal architecture of three hidden layers, comprising of 
600 neurons in the first layer, 500 in the second, and 400 in 
the third, was found through cross-validation on half the 
training data selected randomly, and the full training set was 
used to train the model before prediction. A convergence on 
the mean squared error could be achieved with only 5 epochs 
of training. This extensive training mechanism was found to 
be suitable to optimize the DNN, even though a DNN has a 
fairly large parameter space. 

C. Feature Importance 

To show that our previously described method produces 
importance scores that are indicative of each feature’s actual 
importance in predicting enhancers, the input features were 
sorted by their scores. Then we chose of a set of the top 10 
features and trained a DNN. This DNN was tested against 5 
subsample sets each consisting of 480K random data points 
sampled without replacement across all 24 chromosomes. 
We continuously repeated this procedure by incrementing 
the size of the set in batches of 10 features, then training and 
testing a new DNN for the entire set of 480 features. 

The results show that a plateau is reached at a certain 
input feature set size. This feature set was used to train a 
DNN, identical to the initial DNN but with a reduced number 
of features with the highest importance scores, then the 
performance of the initial DNN using all 480 features as 
input and the reduced DNN using selected features was 
compared for evaluation. 

D. Validation 

The standard precision and recall metrics misrepresent 
actual prediction performance on real data, since there are 
many more unknown functional sites than just the p300, 
CBP, NANOG, SOX2, OCT4 binding enhancers or TSS. 
Ideally, we would have to evaluate performance on all these 
sites that are unaccounted for. However, most are not 
experimentally verified and are unknown. Thus, there is not 
enough data to make an accurate evaluation of the precision 
and recall of any computational model. This observation has 
been made by prior computational approaches for enhancer 
prediction, such as RFECS. Consequently, they have also not 
used the standard precision and recall metrics in their 
evaluation.  

Furthermore, functional enhancers are experimentally 
verified by single peak locations. However, in reality, 
enhancers exist in various levels (heights) and sizes (widths) 
that more or less gradually decrease around the peaks. These 
peaks are not available during prediction on real data because 
we are trying to predict for locations that have not yet been 
experimentally verified. Therefore, any computational model 
must be able to predict for the peak as well as the 
surrounding non-peak regions. Further, the evaluation 
method must synthesize some criterion to determine what is 
the ground truth (is it an enhancer or not) for any genic 
region away from the peak location. Therefore, the 
traditional evaluation using precision and recall metrics 
cannot be used in this case. 

Consequently, RFECS introduced the notion of validation to 
solve this problem by checking and validating a prediction 
against criteria mentioned at the end of this section. If a 
location has histone modification enrichment signatures 
similar to that of an enhancer and a prediction is made on 
that location, we can say the prediction is validated, given 
that the location is sufficiently close to either a known 
enhancer peak marker or an open chromatin site. However, 
the RFECS method of evaluation has one drawback. This 
method singles out TSSs as misclassifications, while 
omitting known insulators, promoters, and other functional 
non-enhancer sites, and lumping them together as 
‘Unknown’. TSSs alone only make up a tiny portion of non-
enhancers, and are not truly representative of the real overall 
misclassifications that a prediction algorithm makes. 
Furthermore, if enhancers are a subset of DHS, it is safe to 
assume that the unknown sites are, at the very least, not 
enhancers of any kind and should be considered invalid as 
well. They should not be “unknown” from an enhancer 
prediction point of view because we “know” they are not 
enhancers. Based on these observations, the RFECS 
validation method was refined to classify predicted 
enhancers as either “validated” or “invalid”, based on the 
following criteria. True Positive markers (TPM) refer to 
distal DHS sites, p300 or CBP coactivator binding sites, and 
TFBS that are greater than 1kb away from TSS.  

· If a predicted enhancer lies within 2.5kb of a TPM, then 
the prediction is “validated”. In this case, we know that 
this site is either a known enhancer, or an unknown 



enhancer that we can safely assume to be an enhancer 
since it overlaps with a DHS site. 

· Otherwise, it is “invalid”. This means that it is either a 
TSS or an Unknown, but we know for a fact it is not an 
enhancer and hence, the prediction is incorrect.  

IV. RESULTS 

We trained an initial DNN using all 480 features from the 
24 histone modifications, then calculated the importance 
score for each feature from the learned weights of the DNN 
according to Equation 1. The features were then sorted by 
their respective importance scores and different subsets of 
features were used to train DNNs, starting with the top 10 
features, top 20 features, and so on, ending at top 480. The 
architecture is fixed, with 400 neurons in the first layer, 300 
in the second, and 200 in the third. Each DNN was tested 
against 5 random subsamples of 480K data points each, 
chosen from among all the chromosomes. Figure 3 shows 
the features sorted by their importance score in descending 
order, plotted along with the subsample validation rate of 

each DNN, first for the H1, and next, for the IMR90 cell line. 

We can see that validation rate increases sharply as 
important features are added. However, the rate increases 
more gradually after the top-150 features are added, for both 
cell types. This confirms that our weight analysis method 

does indeed find the most important features for DNN and 
allows us to use the reduced subset of 150 features for the 
final system. 

Next, we find the importance of each histone 
modification by summing up the importance scores of its 20 
features. The results are shown in Figure 4.  

The most important histone modifications we found to 
confirm previous reports of H3K4me1 (32, 40), H3K27ac 
(41, 42), and H3K4me2 (16), being the most important ones, 
in various combinations, overall in global enhancer 
prediction. However, comparing the histone modification 
importance of H1 and IMR90 also reveals cell-type specific 
differences. While H3K4me2 and H3K27ac are the most 
important histone modifications for H1, for IMR90, 
H3K4me1 and H3K27ac are the most important. We can see 
that the important histone modifications are different for the 
two cell types (with some overlap). This information can 
help computational scientists when building models to make 
predictions on specific cell types. Further, it can also help 
life-science researchers optimize their experiments and 
collect the features for the most important histone 
modifications, for the cell type that they are focusing on. 

Figure 4: Importance scores of each histone modification, 

calculated as the sum of its 20 features. The important histone 

modifications are different for the two cell types H1 and IMR90, 

albeit with some overlap. 

Figure 3: Feature importance score and validation rate when 
only a subset of features is used, for cell types H1 and IMR90. 



Figure 5 shows importance scores of features within 
each histone modification. We selected four histone 
modifications to show the four distinct feature-importance 
patterns that we observe in the data. We omit the IMR90 
results since they were similar to the H1 results presented 
here. This reveals that the most important features within a 
histone modification are not always centered at the enhancer 
site location, and consequently, it is detrimental to use fixed 
window sizes around the enhancer location, as all prior 
computational approaches have done. Window sizes that are 
too small can lead to important features being excluded, 
while large window sizes will include noise in the data that 
can be detrimental to prediction accuracy. Furthermore, 
certain “unimportant” histone modifications do contain 
relatively important features. This is why omitting histone 
modifications, altogether, even though they were reported to 
be unimportant can hurt the classifier’s performance. Thus, 
analysis at this finer granularity of features, rather than the 
coarser granularity of histone modifications used in prior 
approaches, is needed.  

Sorting by the feature importance allows us to select only 
the most important and necessary features for prediction, 
instead of a fixed window size that has been used with 
previous methods. This allows us to reduce the number of 
input features necessary without a significant loss in its 
actual performance. Figure 6 shows the comparison between 
the full 480-feature DNN and the DNN with the selected top-
150 features. For generating this figure, the threshold that is 
used as a comparison point for the output of the DNN is 
varied. Thus, as the threshold is raised, a fewer number of 
enhancer predictions are done. First, note that a realistic 
range for predicting prominent enhancer activity is 
approximately until 10

5
 predictions; beyond that the 

predictions are too uncertain due to marginal enhancers or 
sites exhibiting weak enhancer signatures being predicted. 
Within this operational range, the validation performance 
with the reduced 150 features is no more than 5% worse than 
with the full feature set. For much of the operational region, 
the difference is approximately 2% or less. Thus, we see that 

the reduction in the feature space, which reduces the cost of 
biological experiments to collect the data and the size of 
input data that a DNN has to be trained and tested with, does 
not hurt the enhancer prediction performance significantly. 
The interpretability of the DNN comes as another benefit of 
our process of reducing the feature set based on the 
importance scores of the features as calculated by our 
method. 

We compare the runtime of our approach with DEEP and 
RFECS. The results are shown in Table 1. For EP-DNN, the 
top 150 features were used. We see that for prediction, EP-
DNN performs 7.7 times faster than DEEP and 14.8 times 
faster than RFECS. For training, which is typically less time 
critical, EP-DNN falls in between RFECS (best) and DEEP 
(worst). 

Table 1: Comparison of training and prediction runtime for 
EP-DNN, DEEP, and RFECS. Number of predictions is fixed at 
40,000. 

Method 
Training Time 

(seconds) 
Prediction Time 

(seconds) 

EP-DNN 57.90 1.88

DEEP 1,473.88 14.52 

RFECS 5.12 27.80 

V. CONCLUSION 

Enhancers are short DNA sequences that modulate gene 
expression patterns. Recent studies have shown that enhancer 
elements could be enriched for certain histone modification 
combinatorial codes, leading to interest in developing 
computational models to predict enhancer locations. 
However, prior attempts had suffered from either low 
accuracy of prediction or lack of interpretability of the results 
about which histone modifications are biologically 
significant. In this paper, we developed a Deep Neural 
Network based method, called EP-DNN, which addressed 

Figure 5: Importance scores for each feature of different histone 
modifications. The four specific histone modifications shown here 
represent the different patterns found through our analysis. 

Figure 6: Validation rate comparison between using only the top 150 
features and using all 480 features for H1 cell type. We find that for 
the operational region (less than 105 enhancer predictions), the system 
with the reduced feature set performs comparably to that with the full 
feature set. 



both of these issues. We find validation rates of above 90% 
for the operational region of enhancer prediction. We 
developed a method to interpret which histone modifications 
are important, and within that, which features proximal or 
distal to the enhancer site, are important. We uncovered that 
the important histone modifications vary from between cell 
types. Our results have implications for computational 
scientists who can now do feature selection for their 
classification task and for biologists who can now 
experimentally collect data only for the relevant histone 
modifications. In ongoing work, we are experimenting with 
simpler classification schemes, parallelizing our 
computational approach, and investigating further cell types 
to uncover possible groupings among cell types.  
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