
Numerical Analysis of Elias’s and Peres’s
Deterministic Extractors

Amonrat Prasitsupparote
Graduate School of Environment

and Information Sciences
Yokohama National University, Japan

Norio Konno
Department of Applied Mathematics

Faculty of Engineering
Yokohama National University, Japan

Junji Shikata
Graduate School of Environment

and Information Sciences/
Institute of Advanced Sciences

Yokohama National University, Japan

Abstract—Generating truly random numbers is important in
cryptography. Von Neumann proposed the simple procedure for
extracting truly random bits from a sequence of independent,
identically distributed random biased bits about half century
ago. The improved algorithms of the von Neumann’s extractor
were later proposed by Elias and Peres. Peres showed that his
extractor achieved the optimal rate if the length of input and the
number of iterations tend to infinity. In contrast, Elias showed
that his extractor achieved the optimal rate if the block size tends
to infinity. Although these two algorithms are fundamental and
important, their performance including the rates for reasonably
finite input sequences is not analyzed in details. In this paper,
we show numerical performance of Peres’s extractor and Elias’s
one in terms of practical aspects. Our experimental results show
that Peres’s extractor is much better than Elias’s one under the
same input size and the almost same running time.

keywords—True random number generation, von Neumann’s
extractor, Peres’s extractor, Elias’s extractor

I. INTRODUCTION

In 2012, Heninger et al. [1] and Lenstra et al. [2] explored
RSA keys in TLS and SSH servers on the Internet. Their
experiment showed the weak random numbers for generat-
ing random primes in embedded devices. This tells us that,
in RSA-key generation random numbers are important, and
RSA will be broken if there is not enough randomness to
generate RSA keys. Therefore, the random number generation
is important to generate cryptographically secure keys.

There are two basic types of generating random numbers:
the true random number generator (TRNG) and the pseudo-
random number generator (PRNG). TRNG is a deterministic
algorithm which takes as input a biased random sequence
generated by utilizing physical phenomena and transforms it
into an unbiased random sequence. The PRNG is an algorithm
that takes as input a biased random sequence and a seed being
short and truly random and outputs a long pseudorandom
sequence which is computationally indistinguishable from a
truly random sequence. In securely constructing cryptographic
protocols having computational security (e.g., public-key cryp-
tography), PRNGs are usually used to generate secret-keys in
the protocols, since PRNGs can output long random sequences.
However, TRNGs are also important, since they are used for
generating secret-keys in securely constructing cryptographic
protocols having information-theoretic security or used even
for generating seeds of PRNGs.

Related Work. A deterministic extractor is a deterministic
algorithm which takes a non-uniformly random sequence as

input and outputs a uniformly random sequence. The pre-
vious works[3], [4], [5] usually consider the case that in-
put sequences are given by the Bernoulli source Bern(p),
where Bern(p) outputs (x1, x2, . . . , xn) ∈ {0, 1}n which are
i.i.d. (identically and independently distributed) according to
Pr(xi = 1) = p and Pr(xi = 0) = q = 1 − p for some
unknown p ∈ (0, 1). In this paper, we also consider that inputs
of extractors are binary sequences output by Bern(p). The
most famous extractor is the von Neumann’s extractor [3]. He
demonstrated a simple procedure for extracting independent
unbiased bits from a sequence of i.i.d. and biased bits.

An extension of the von Neumann’s extractor was proposed
by Elias [4] in 1971. The basic idea behind the Elias’s method
is to utilize a block coding technique to improve redundancy
of the von Neumann’s extractor. Elias’s method requires ex-
ponential time and exponential memory size with respect to
N , where N is block size, to store all 2N input sequences
with their assignment of output sequences. To improve time
and space complexity of the Elias’s method, Ryabko and
Matchikina [6] proposed a fast method of implementing the
Elias’s method which we call RM method in this paper. The
RM method utilizes the enumerative encoding technique from
[7] and Schönhage–Strassen algorithm [8] for fast integer
multiplication in order to compute assignment of output se-
quences. By using the RM method, time complexity and space
complexity of Elias’s extractor are improved. In 1992, Peres
[5] proposed a procedure for extracting independent unbiased
bits from a sequence of i.i.d. and biased bits which is an
improved one from the von Neumann’s extractor. The basic
idea in Peres’s extractor is to reuse the bit sequence which is
discarded in the von Neumann’s extractor by iterating similar
procedures in the von Neumann’s extractor.

In 2013, Pae [9] compared rates of Peres’s extractor and
Elias’s extractor for probability p = 1

3 . Pae concludes Elias’s
extractor requires more computational costs than Peres’s ex-
tractor, but there is a trade off between computational costs and
rates. However, Pae did not consider any p ∈ (0, 1) except for
p = 1

3 , and one of purposes in this paper is to show results
for any p ∈ (0, 1).

In 2016, Chattopadhyay and Zuckerman [10] proposed a
general two-source extractor in which each source has a poly-
logarithmic min-entropy. They combined two weak random
sequences into a single sequence by using a K-Ramsey graph
and a resilient function. Their extractor only outputs one bit
and achieves negligible error.

978-1-5090-4780-2/17/$31.00 ©2017 IEEE

Furthermore, most researchers are interested in implement-
ing a randomness extractor in a real world. For example, Bouda
et al. [11] used mobile phones or pocket computers to generate
random data close to being truly random in 2009. They took 12
pictures per second then used their function for random 4 bits
in each picture, and then applied Carter-Wegman universal2
hash functions. Their output passed 15 of 16 items in NIST
statistical tests at the confidence level α = 0.01. However,
their proposed model was not a simultaneous system, thus it
would be difficult to use in a practical application.

Later in 2011, Voris et al. [12] investigated the use of
accelerators on the RFID tags as a source. They implemented
a two-stage extractor on the RFID tags. And, it can produce
128 bits random output in 1.5 seconds and passed the NIST
statistical tests. However, they stored a Toeplitz matrix on the
RFID tags when performing matrix multiplication operations,
thus this process needs a large amount of memory on the RFID
tags, though the RFID tags have limited memory.

Our Contribution. Recently, most researchers are interested
in two-source or fast seeded extractors (i.e., not deterministic
ones). On the other hand, since the deterministic extractors
by von Neumann, Elias, and Peres are fundamental and
simple, a few researchers are interested in such extractors,
especially from viewpoints of practical use. For measuring
the performance of a deterministic extractor, most researchers
focus on the rate or redundancy. For example, the rate of von
Neumann’s extractor is pq that is far from h(p), where h(p)
is the binary entropy function. The rate of Elias’s extractor
converges to h(p) as the block size tends to infinity. In addition,
Elias considered to take long block-size, thus the good rate
is achieved when the block size is equal to the input length.
Elias’s extractor looks suitable in terms of the rate while it
requires the exponential time and the exponential memory size
with respect to the block size. In contrast, Peres considered the
rate in his extractor and showed that it achieved the optimal
rate if the length of input and the number of iterations tend
to infinity. However, we cannot know an actual rate for finite
input sequences in a real world. Peres’s extractor requires small
space complexity and time complexity, thus it looks suitable
in terms of practical use. From the observation above, it is not
easy to conclude which one is the more suitable extractor for
practical use in general. Therefore, we show the comparison
of both extractors under the same environments, that is, under
the same time complexity and a finite input sequence with any
biased probability. Firstly, we explain our implementation of
both extractors in Section III. After that, we investigate time
complexity of both extractors with input sequence of length
n = 100, 200, . . . , 1000. As a result, we show that Peres’s
extractor with iterations ν = 6 and Elias’s extractor with
block size N = 6 have almost same running time. Also, we
compare the redundancy of both extractors under the almost
same running time, and we show that Peres’s extractor is much
better than Elias’s one under the almost same running time.

II. PRELIMINARIES

A deterministic extractor is a deterministic algorithm which
takes non-uniformly random sequences (i.e., biased sequences)
as input and outputs uniformly random sequences (i.e., unbi-
ased ones). For simplicity, the previous works [3], [4], [5]
usually consider the case that input sequences are given by

the Bernoulli source Bern(p) where Bern(p) outputs an i.i.d.
sequence (x1, x2, . . . , xn) ∈ {0, 1}n according to Pr(xi =
1) = p and Pr(xi = 0) = q = 1 − p for some unknown
p ∈ (0, 1). In this paper, we also consider that inputs of ex-
tractors are binary sequences output by Bern(p). Suppose that
a deterministic extractor takes (x1, x2, . . . , xn) ∈ {0, 1}n as
input and outputs (y1, y2, . . . , y`) ∈ {0, 1}`. Then, we denote
the average bit-length of outputs by ¯̀(n) which is a function
of n, and define the rate function by r(p) := limn→∞ ¯̀(n)/n.

In addition, we define the redundancy function by f(p) :=
h(p)−r(p), where h(p) is the binary entropy function defined
by h(p) = −p log p − (1 − p) log(1 − p). We note that the
above definition of redundancy functions is meaningful, since
h(p) is shown to be the information bound in [4], [5]. In this
paper, we define non-asymptotic functions r(p, n) := ¯̀(n)/n,
and f(p, n) := h(p) − r(p, n). Furthermore, we define the
maximum redundancy by Γ := supp∈(0,1) f(p) and Γ(n) :=
supp∈(0,1) f(p, n) for every n.

A. von Neumann’s extractor

In 1951, von Neumann [3] proposed the simple proce-
dure for extracting independent unbiased bits from a se-
quence of i.i.d. and biased bits, which is called the von
Neumann’s extractor. This method divides the input sequence
(x1, x2, x3, x4, . . .) into the pairs1 ((x1x2), (x3x4), . . .) and
considers a mapping defined by

00 7→ ∧, 01 7→ 0, 10 7→ 1, 11 7→ ∧, (1)

where the symbol ∧ denotes no output bit. Then, the extractor
outputs the unbiased sequence obtained by concatenating the
outputs of the mapping (1).

Complexity. The von Neumann’s extractor is efficient in the
sense that both time complexity and space complexity are
small: time complexity is evaluated as O(n), and its space
complexity is evaluated as O(1).

Redundancy. The von Neumann’s extractor is not desirable,
since maximum redundancy is far from zero. Actually, the
rate function rvN(p) of the von Neumann’s extractor is eval-
uated by rvN(p) = limn→∞ npq/n = pq, which is 1/4 at
p = q = 1/2 and less elsewhere. In addition, the redundancy
function f vN(p) and maximum redundancy ΓvN are evaluated
as f vN(p) = h(p) − p(1 − p),ΓvN = supp∈(0,1) f

vN(p) =

f vN(1/2) = 3/4.

B. Elias’s extractor

An extension of the von Neumann’s extractor was proposed
by Elias [4] in 1971. The basic idea behind the Elias’s method
is to utilize a block coding technique to improve redundancy of
the von Neumann’s extractor. Let N be the block size used in
Elias’s extractor, and it is a natural number N ∈ N with N ≥ 2.
For all binary sequences with length N , we first partition them
into N + 1 sets Sk (k = 0, 1, 2, . . . , N), where Sk consists of
all the

(
N
k

)
sequences of length N which have k ones and N−k

zeros. Here, we note that each sequence of Sk is equiprobable,
i.e., the probability is pkqN−k.

1If n is odd, we discard the last bit.

Let |Sk| =
(
N
k

)
= αm2m +αm−12m−1 + ...+α020 (αi ∈

{0, 1}) be the binary expression of the integer |Sk|, and we
briefly write |Sk| = (αm, αm−1, . . . , α0) for it. For each j
(1 ≤ j ≤ m) such that αj = 1, we assign 2j distinct output
sequences of length j to 2j distinct sequences of Sk which
have not already been assigned. If α0 = 1, one sequence of
Sk is assigned to ∧. In particular, since |S0| = |SN | = 1, two
sequences (0, 0, . . . , 0) and (1, 1, . . . , 1) are assigned to ∧.

Example 1: Suppose that the block size is N = 4. Then,
we partition the set {0, 1}4 of possible input sequences into
the following subsets:

S0 = {(0, 0, 0, 0)},
S1 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},
S2 = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 1, 0, 0),

(1, 0, 1, 0), (1, 0, 0, 1)},
S3 = {(1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 1)},
S4 = {(1, 1, 1, 1)}.

Then, we have |S0| = |S4| = 1 = (1), |S1| = |S3| = 4 =
(1, 0, 0), |S2| = 6 = (1, 1, 0). For instance, we consider the
following assignment of output sequences:

(0, 0, 0, 0) 7→ ∧, (1, 1, 1, 1) 7→ ∧,
(1, 0, 0, 0) 7→ (0, 0), (1, 1, 1, 0) 7→ (0, 0),

(0, 1, 0, 0) 7→ (0, 1), (1, 0, 1, 1) 7→ (1, 0),

(0, 0, 1, 0) 7→ (1, 0), (1, 1, 0, 1) 7→ (1, 1),

(0, 0, 0, 1) 7→ (1, 1), (0, 1, 1, 1) 7→ (0, 1),

(0, 0, 1, 1) 7→ (0, 1), (1, 0, 1, 0) 7→ (1, 0),

(0, 1, 1, 0) 7→ (0, 0), (1, 0, 0, 1) 7→ (1, 1),

(0, 1, 0, 1) 7→ (0), (1, 1, 0, 0) 7→ (1).

Suppose that an input sequence x = (1, 0, 0, 1, 0, 0, 1, 1)
is given. Since N = 4, the sequence is divided as x =
((1, 0, 0, 1), (0, 0, 1, 1)). Then, by the assignment of output
sequences above, the output sequence is y = ((1, 1)(0, 1)) =
(1, 1, 0, 1).

Note that Elias’s extractor with N = 2 is equivalent to
the von Neumann’s extractor, or equivalently the mapping
(1). In this sense, Elias’s extractor is an extension of the von
Neumann’s extractor.

Redundancy. In general, the rate function and redundancy
function of the Elias’s extractor depend on block size N . For
given n-bit input sequence, if we take the maximum block size
N := n, the rate function and maximum redundancy would be
best. For simplicity, we assume that N = n in the following
explanation. The rate function rE(p,N) is evaluated by

rE(p,N) ≈ 1

N

N∑
k=0

(
N

k

)
pk(1− p)N−k log

(
N

k

)
(2)

Elias [4] showed that the rate function2 rE(p,N) of the Elias’s
extractor converges to h(p) as N → ∞, or equivalently, the
redundancy function fE(p,N) := h(p)−rE(p,N) converges to
zero as N →∞. More precisely, it was shown that fE(p,N) =
O(1/N) for any fixed p.

2In Elias’s paper [4], it is called efficiency.

Complexity. A naive implementation of the Elias’s extractor
requires much space complexity and time complexity to make
a table of the assignment of output sequences as illustrated
by Example 1. Actually, it requires exponential time and
exponential memory size with respect to N . Ryabko and
Matchikina [6] proposed a fast method of implementing the
Elias’s extractor which we call RM method in this paper. The
RM method utilizes enumerative encoding technique from [7]
and Schönhage–Strassen algorithm [8] for fast integer multi-
plication in order to compute assignment of output sequences
instead of making the large table as illustrated by Example 1.
The RM method is executed as follows. Suppose that a binary
input sequence xN = (x1, x2, . . . , xN) contains k ones and
N − k zeros. Then, the number Num(xN) is defined by

Num(xN) =

N∑
t=1

(xtN − t

k −
t−1∑
i=1

xi

)
. (3)

Then, a binary codeword code(xN) of xN , which is assign-
ment of an output sequence of xN , is computed as follows:

(i) Compute Num(xN) in the set Sk, if xN contains k
ones.

(ii) Let |Sk| =
(
N
k

)
= 2j0 + 2j1 + ...+ 2jm for 0 ≤ j0 <

j1 < ... < jm.
(iii) If j0 = 0 and Num(xN) = 0, then code(xN) = ∧.
(iv) If 0 ≤ Num(xN) < 2j0 , then code(xN) is defined to

be the j0 low-order binary string of Num(xN).

(v) If
t∑

s=0
2js ≤ Num(xN) <

t∑
s=0

2js + 2jt+1 for some

0 ≤ t ≤ m, then code(xN) is defined to be the suffix
consisting of the jt+1 binary string of Num(xN).

By using the RM method, time complexity and space
complexity of Elias’s extractor are improved as follows: Time
complexity is O(N log3N log logN), and space complexity is
O(N log2N) (see [6] for details).

C. Peres’s extractor

The basic idea in Peres’s extractor is to reuse the bit
sequence which is discarded in the mapping (1) to improve
redundancy of the von Neumann’s extractor. In the following,
we denote the von Neumann’s extractor by Ψ1. For an n-bit
sequence (x1, x2, . . . , xn), we describe the von Neumann’s
extractor by Ψ1(x1, x2, . . . , xn) = (y1, y2, . . . , y`), where
yi = x2mi−1 and m1 < m2 < · · · < m` are all the
indices satisfying x2mi−1 6= x2mi

with mi ≤ n/2. In Peres’s
extractor, Ψν (ν ≥ 2) is defined inductively as follows: For an
even n,

Ψν(x1, x2, . . . , xn) = Ψ1(x1, x2, . . . , xn) ∗
Ψν−1(u1, u2, . . . , un

2
) ∗

Ψν−1(v1, v2, . . . , vn
2−`), (4)

where ∗ is concatenation; uj = x2j−1⊕x2j for 1 ≤ j ≤ n/2;
vs = x2is−1 and i1 < i2 < · · · < in

2−` are all the indices
satisfying x2is−1 = x2is with is ≤ n/2. For an odd input size
n, Ψν(x1, x2, . . . , xn) := Ψν(x1, x2, . . . , xn−1), i.e., the last
bit is discarded and utilize the case of an even n above.

Note that, in Peres’s extractor, the number of iterations ν is
at most blog nc, since Ψν for every ν ≥ 2 is defined by Ψν−1

having an input sequence whose bit-length is at most n/2, i.e.,
the bit-length of both (u1, u2, . . . , un

2
) and (v1, v2, . . . , vn

2−`)
in the equation (4) is at most n/2. Obviously, Peres’s extractor
with ν = 1 is the same as the von Neumann’s extractor, and
Peres’s extractor with a large ν (say, ν = blog nc) is considered
to be an elegantly improved version from von Neumann’s one
by utilizing a recursion mechanism.

Complexity. We denote time complexity of Ψν by Tν(n). By
the equation (4), we have

Tν(n) = T1(n) + n/2 + Tν−1(n/2) + Tν−1(n/2− `), (5)

and T1(n) = O(n) (see Section II-A for time complexity of
the von Neumann extractor). From the condition (5), we obtain
Tν(n) = O(νn) for Ψν with 1 ≤ ν ≤ blog nc. In particular,
time complexity of Peres’s extractor with the maximum itera-
tions ν = blog nc is evaluated as Tν(n) = O(n log n).

Redundancy. The rate function rPν (p) of the procedure Ψν can
be computed inductively by the equation

rPν (p) = pq + 1
2r

P
ν−1(p2 + q2) +

1
2 (p2 + q2)rPν−1

(
p2

p2+q2

)
(6)

for ν ≥ 2, and rP1 (p) = pq. Note that rP1 (p) is the rate of
the von Neumann’s extractor. It is shown in [5] that rPν (p) ≤
rPν+1(p) for all ν ∈ N and for all p ∈ (0, 1), and lim

ν→∞
rPν (p) =

h(p) uniformly in p ∈ (0, 1).

In other words, the above result is described in terms of
redundancy as follows: The redundancy function fPν (p) =
h(p)− rPν (p) satisfies

fPν (p) =
1

2
fPν−1(p2 + q2) +

1

2
(p2 + q2)fPν−1

(
p2

p2 + q2

)
, (7)

for ν ≥ 2 and fP1 (p) = h(p) − p(1 − p), where the above
equation (7) follows from the equation (6). Furthermore, it
holds that fPν (p) ≥ fPν+1(p) for all ν ∈ N and for all p ∈ (0, 1),
and lim

ν→∞
fPν (p) = 0 uniformly in p ∈ (0, 1).

III. NUMERICAL ANALYSIS BY IMPLEMENTATION

To evaluate the performance of Peres’s extractor and Elias’s
one with RM method, we use Java language version 1.8 with
Intel 3.70 GHz RAM 4 GB. We consider three questions:

(i) Do theoretical and experimental redundancy of the
Peres’s extractor and Elias’s one with RM method
show the same results?

(ii) What is the actual difference of running time required
in Peres’s extractor and Elias’s one with RM method?

(iii) Under the almost same running time, which extractor
is better in terms of redundancy?

We perform analysis to answer the questions as follows. To
answer (i), we analyze redundancy of Peres’s extractor in
Section III-A and Elias’s extractor with RM method in Section
III-B. We use a pseudorandom number generation program
rand() in MATLAB [13] to generate biased input sequences by
controlling the probability. The reasonability of using rand()
is explained as follows:

• We can control the probability p for each input se-
quence in our experiments.

• If theoretical and experimental redundancy results are
almost the same, we can rely on rand() and can use
it to generate biased input sequences.

Section III-A uses the probability p = 0.001, 0.002, . . . , 0.999
and the number of iterations satisfies ν ≤ blog 180c = 6.
And, Section III-B uses probability p = 0.1, 0.2, . . . , 0.9
and block size N = 10, 20, 30, 60, 90, 180. In addition, we
use Schönhage–Strassen algorithm of fast multiplication for
computing

(
N
k

)
. We consider the following:

1) Schönhage–Strassen multiplication algorithm re-
quires O(N1+ε) which is asymptotically better than
O(N2) (i.e., the normal multiplication). However, the
advantage of Schönhage–Strassen method over the
normal multiplication seems to appear when N is
large enough. In addition, there may be the case that
Schönhage–Strassen multiplication algorithm is not
supported in some software, and in this case users
need to implement it by themselves.

2) We want to avoid multiplication operations and use
only addition operations, since it is simple and makes
the basic operations lighter, so that it can be used in
various applications and environments.

We use the recursive formula
(
N
k

)
=
(
N−1
k−1

)
+
(
N−1
k

)
for 10 ≤

N ≤ 180 in order to compute
(
N
k

)
only by additions. For our

experiment in Sections III-A and III-B, we generate 180-bit
input sequences 100 times for each probability p. Then, we
calculate the average on the redundancy function fPν (p) and
fE(p,N) for each probability p.

To answer (ii), we analyze running time of both extractors
in Section III-C. This experiment does not use the probability
p as a parameter, thus we change the random number generator
to RANDOM.ORG [14]. It produces sequences close to being
true random with unknown probability p by using randomness
of atmospheric noises. And, it provides 131,072 random bits in
each time, thus we take random sequences with bit-length n =
100, 200, . . . , 1000 100 times for each n, then we calculate the
average on the running time.

To answer (iii), we compare the redundancy of both extrac-
tors under the almost same running time in Section III-D. We
can clarify which is better in practice in terms of redundancy
under the almost same time complexity.

A. Analysis of redundancy of Peres’s extractor

We show the redundancy of Peres’s extractor from theo-
retical aspects in Fig. 1. We calculated fPν (p) by using (7)
with ν = 1, 2, . . . , 6 and p = 0.1, 0.2, . . . , 0.9, then depicted
the graphs of fPν (p), where x-axis means probability p and
y-axis means redundancy. It can be seen that, the redundancy
becomes smaller as the number of iterations becomes bigger,
for all p ∈ (0, 1).

In Fig. 2, we show experimental redundancy of Peres’s
extractor with 180-bit inputs. The results are almost the same
as theoretical ones in Fig. 1.

Fig. 1: Theoretical estimate of Peres’s extractor.

Fig. 2: Experimental estimate of 180-bit Peres’s extractor.

B. Analysis of redundancy of Elias’s extractor with RM
method

In Fig. 3, we calculated fE(p,N) = h(p) − rE(p,N) by
using (2) with p = 0.1, 0.2, . . . , 0.9 and N = 10, 20, 30, 60,
90, 180. It can be easily seen that redundancy becomes smaller
as block size becomes larger. Although there is slight differ-
ence between theoretical estimate in Fig. 3 and experimental
estimate in Fig. 4, the experimental redundancy in our imple-
mentation is similar to the theoretical redundancy.

C. Analysis of running time of both extractors

Fig. 5 shows running time of Peres’s extractor with
ν = 1, 2, . . . , 6. As the number of iterations becomes larger,
the running time is required more. In addition, the running
time increases almost linearly but slope depends on ν, as
supported by theoretical estimate of time complexity O(νn).
Furthermore, the running time of Peres’s extractor with all
parameters in our experiment is at most 0.32 milliseconds,
which implies that the Peres’s extractor is quite practical.

Fig. 6 shows running time of Elias’s extractor with RM
method with N = 2, 4, 6, 8, 10, 12, 16, 20. As the block size
becomes larger, the running time is required more. The running
time increases almost linearly but slope depends on N , as
time complexity can be theoretically evaluated as (n/N) ·
O(N2 logN) = O(nN logN). Furthermore, the running time

Fig. 3: Theoretical estimate of Elias’s extractor with RM
method.

Fig. 4: Experimental estimate of 180-bit Elias’s extractor with
RM method.

of Elias’s extractor with RM method with all parameters in
our experiment is at most 8.1 milliseconds.

By comparing the running time of both extractors, we can
conclude that the Peres’s extractor is faster than the Elias’s one
with RM method for the same bit-length of inputs.

D. Comparison of redundancy under the almost same running
time

By Fig. 5 and 6, the running time of Peres’s extractor with
ν = 6 is almost the same as Elias’s one with RM method with
block size N = 6. Hence, we compare fP6 (p) and fE(p, 6) in
terms of practical aspects, and our result is shown in Fig. 7. It
is shown that Peres’s extractor is much better than Elias’s one
with RM method in terms of redundancy.

Furthermore, we depicted the graphs of fE(p,N) with
N = 10, 20 in addition to fE(p, 6) in Fig. 7. This result shows
that: even if fE(p, 10) is allowed to use, fP6 (p) is better than
fE(p, 10); if fE(p, 20) is allowed to use, fP6 (p) is almost the
same as fE(p, 20), though running time of Elias’s extractor
with RM method with block size N = 10, 20 is quite larger
than that of Peres’s extractor with ν = 6.

Fig. 5: Running time of Peres’s extractor.

Fig. 6: Running time of Elias’s extractor with RM method.

Fig. 7: Comparison of redundancy of Peres’s extractor and
Elias’s one with RM method for 180-bit inputs.

IV. CONCLUSION

One may think that the rate of Elias’s extractor is better
than Peres’s one, while Peres’s extractor is superior to Elias’s
one in practical use in terms of the time complexity and
the space complexity. In this paper, we evaluated numerical
performance of Peres’s extractor and Elias’s one with RM
method in term of practical aspects. For analysis of the

redundancy, we used a pseudo-random number from rand()
in MATLAB to generate 180-bit biased input sequences by
controlling the probability p, then calculated the redundancy
of both extractors in term of theoretical and experimental
aspects (see Fig. 1-4). Our result shows that the theoretical
and experimental redundancy are almost the same in both
extractors. For analysis of the running time, our result shows
that the redundancy of Peres’s extractor was much better than
Elias’s one with RM method under the almost same running
time. Consequently, Peres’s extractor will be better to use in
applications such as cryptography.

ACKNOWLEDGMENT

This work was in part supported by JSPS KAKENHI Grant
Number 15H02710, and in part conducted under the auspices
of the MEXT Program for Promoting the Reform of National
Universities.

REFERENCES

[1] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining
your Ps and Qs: Detection of widespread weak keys in network
devices,” in Proceedings of the 21st USENIX Security Symposium, Aug.
2012.

[2] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and
C. Wachter, “Public Keys,” in Advances in Cryptology – CRYPTO 2012,
ser. Lecture Notes in Computer Science, R. Safavi-Naini and R. Canetti,
Eds. Springer Berlin Heidelberg, 2012, no. 7417, pp. 626–642.

[3] J. v. Neumann, “Various Techniques Used in Connection with Random
Digits, Notes by G E Forsythe,” National Bureau of Standards Applied
Math Series, vol. 12, pp. 36–38, 1951.

[4] P. Elias, “The Efficient Construction of an Unbiased Random Se-
quence,” Ann. Math. Statist., vol. 43, no. 3, pp. 865–870, Jun. 1972.

[5] Y. Peres, “Iterating Von Neumann’s Procedure for Extracting Random
Bits,” Ann. Statist., vol. 20, no. 1, pp. 590–597, Mar. 1992.

[6] B. Ryabko and E. Matchikina, “Fast and efficient construction of an
unbiased random sequence,” IEEE Transactions on Information Theory,
vol. 46, no. 3, pp. 1090–1093, May 2000.

[7] T. Cover, “Enumerative source encoding,” IEEE Transactions on Infor-
mation Theory, vol. 19, no. 1, pp. 73–77, Jan. 1973.

[8] A. Schönhage and V. Strassen, “Schnelle multiplikation großer zahlen,”
Computing, vol. 7, no. 3, pp. 281–292, 1971.

[9] S.-i. Pae, “Exact output rate of Peres’s algorithm for random number
generation,” Information Processing Letters, vol. 113, no. 5–6, pp. 160–
164, Mar. 2013.

[10] E. Chattopadhyay and D. Zuckerman, “Explicit Two-source Extractors
and Resilient Functions,” in Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, ser. STOC 2016. New
York, NY, USA: ACM, 2016, pp. 670–683.

[11] J. Bouda, J. Krhovjak, V. Matyas, and P. Svenda, “Towards True
Random Number Generation in Mobile Environments,” in Identity and
Privacy in the Internet Age, ser. Lecture Notes in Computer Science,
A. Jøsang, T. Maseng, and S. J. Knapskog, Eds. Springer Berlin
Heidelberg, Oct. 2009, no. 5838, pp. 179–189, dOI: 10.1007/978-3-
642-04766-4 13.

[12] J. Voris, N. Saxena, and T. Halevi, “Accelerometers and Randomness:
Perfect Together,” in Proceedings of the Fourth ACM Conference on
Wireless Network Security, ser. WiSec ’11. New York, NY, USA:
ACM, 2011, pp. 115–126.

[13] “Uniformly distributed random numbers - MATLAB rand.” [Online].
Available: http://www.mathworks.com/help/matlab/ref/rand.html

[14] “RANDOM.ORG - Byte Generator.” [Online]. Available:
http://www.random.org/bytes/

