

31%

35%

35%

Skill Level

Beginner

Intermediate

Expert
88%

8%
4%

Overall User Experience

No difference

AppStreamer is
marginally worse

AppStreamer is
significantly worse

73%

23%

4%

Loading Time

No difference

AppStreamer is
marginally worse

AppStreamer is
significantly worse

88%

8%
4%

Delay during a Level

No difference

Slight delays w/
AppStreamer

Significant delays w/
AppStreamer

Figure 7. User study results for Fire Emblem Heroes with 26 participants

Time (second)
0 500 1000 1500 2000 2500

D
ow

nl
oa

d
R

at
e

(M
b/

s)

0

2

4

6

8

10

12

14
Cloud Gaming - Dead Effect 2

Time (second)
0 500 1000 1500 2000 2500

D
ow

nl
oa

d
R

at
e

(M
b/

s)

0

2

4

6

8

10

12

14

16

18
AppStreamer - Dead Effect 2

Time (second)
0 200 400 600 800

D
ow

nl
oa

d
R

at
e

(M
b/

s)

0

2

4

6

8

10

12

14
Cloud Gaming - Fire Emblem Heroes

Time (second)
0 200 400 600 800

D
ow

nl
oa

d
R

at
e

(M
b/

s)

0

2

4

6

8

10

12

14

16

18
AppStreamer - Fire Emblem Heroes

Figure 8. Comparison of bandwidth consumption be-
tween cloud gaming (left) and AppStreamer (right) for
both games

head with Fire Emblem Heroes. Both would be infeasible on
today’s mobile devices. For Dead Effect 2, with BlockPair-
Lookup, average delay per run is 6.32 seconds (8.4X of App-
Streamer), and 74.39 MB of unnecessary blocks are down-
loaded (1.1X of AppStreamer). For Fire Emblem Heroes, av-
erage delay per run is 7.32 seconds (18.8X), and 64.10 MB of
unnecessary blocks downloaded (1.1X). Because BlockPair-
Lookup’s predictions are always a superset of AppStreamer’s
predictions, the higher delay is likely due to the unnecessary
blocks that are put in the download queue delaying the down-
load of necessary blocks and the inefficiency of requesting a
single block at a time. This shows that models that oper-
ate on single block granularity incur too much memory and
delay and are thus impractical.

6.6 Microbenchmarks
In this section, we evaluate how different parameters af-

fect the results. The parameters studied are δ, τ, pstop, L,
minSuperblockSize, pdownload , and Binitial , described in Sec-
tion 3, as well as buffer size and network connection speed.
The results are generated based on trace-based simulation.
In the simulation, first training data is used to train a Markov
model. Then, file reads from the test data is replayed and
given as input to the Markov model. Blocks predicted by the
model that are not already present on the phone are logically
fetched from the storage server, with network speed fixed to
a certain value to simulate real network conditions. In the
case where buffer size is limited, we employ the LRU policy
to evict blocks from the limited storage available.

Since there are many parameters, we conduct the mi-
crobenchmarks by varying one parameter at a time, and fix-
ing the rest of the parameters to the optimal value. Optimal
values are chosen by carefully weighing the tradeoff between
delay and false positives, with higher weight given to delay,
as it has a direct impact on the user experience. The values
are δ = 0.1 second, τ = 0.9, minSuperblockSize = 17, Binitial =
122 MB (excluding APK), pstop = 0.01, L = 60 seconds, and
connection speed = 17.4 Mbps. By default, we do not set a
limit on temporary storage used to store fetched blocks. The
average length of each run is 1,653 seconds. Due to limited
space and the fact that the results show the same trends, we
omit the microbenchmark results for Fire Emblem Heroes,
and show only results for Dead Effect 2. The output metrics
are delay and false positives, defined as predicted blocks that
are not read by the game within 8 minutes of being predicted.
Delays that are long or frequent enough can ruin the user
experience, while false positives incur extra network band-
width and energy cost.

The results are shown in Figure 9. First, with the optimal
parameter values, the amount of false positives is 66 MB.
However, if the playing session were longer, the amount of
false positives will not necessarily increase proportionately,
because there is a limit to how much data is downloaded,
namely the total size of the application.

Now, we look at how each parameter affects the results.
In addition to average worldwide LTE speed of 17.4 Mbps,
we also include average U.S. LTE speed of 13.95 Mbps and
average worldwide WiFi speed of 10.8 Mbps. As expected,
higher connection speed leads to lower delay. Even the lower
WiFi speed of 10.8 Mbps is enough to keep the delay small,
but speed lower than that will result in large delay. Connec-
tion speed has a negligible effect on the false positives. Next,
we look at the amount of initial files cached on the phone,
denoted Binitial . Higher value gives lower delay and false
positives, at the cost of higher storage requirements. Delays
are virtually eliminated at Binitial ≥ 175 MB. This represents
a storage savings of 84%. At the higher end of 200 MB, the
amount of false positives is also reduced.

Recall that when making predictions, our Markov model
relies on two stopping criteria to keep the computation
tractable: lookahead time, denoted by L, and probability stop
threshold, denoted by pstop. From the results, as long as the
lookahead time is at least 30 seconds, the delay remains con-
stantly low and the amount false positives is largely constant.
When the lookahead time is too low, delay increases signif-
icantly. Probability stop threshold is somewhat similar. As
long as the value is 0.02 or lower, delay remains relatively
constant. Higher value leads to higher delay. The amount

46

Connection Speed (Mbps)
10 15 20 25

D
el

ay
 (

se
co

nd
s)

0

5

10

15
Connection Speed

F
al

se
 P

os
iti

ve
s

(M
B

)

64

65

66

67

Delay
False Positives

Amount of Files Store on the Device (MB)
50 100 150 200

D
el

ay
 (

se
co

nd
s)

0

2

4

6
Amount of Files Store on the Device

F
al

se
 P

os
iti

ve
s

(M
B

)

20

40

60

80

Delay
False Positives

Lookahead Time (seconds)
0 50 100 150 200 250

D
el

ay
 (

se
co

nd
s)

0

2

4

6

8

10
Lookahead Time

F
al

se
 P

os
iti

ve
s

(M
B

)

20

30

40

50

60

70

Delay
False Positives

Prediction Probability Stop Threshold
0 0.01 0.02 0.03 0.04 0.05

D
el

ay
 (

se
co

nd
s)

0.5

1

1.5

2

2.5

3
Prediction Probability Stop Threshold

F
al

se
 P

os
iti

ve
s

(M
B

)

50

55

60

65

70

75

Delay
False Positives

Block Fetching Threshold
0.005 0.01 0.02 0.05 0.1 0.2

D
el

ay
 (

se
co

nd
s)

0

5

10

15
Block Fetching Threshold

F
al

se
 P

os
iti

ve
s

(M
B

)

20

40

60

80

Delay
False Positives

Time between Partitions Threshold (/, in seconds)
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

D
el

ay
 (

se
co

nd
s)

0.5

1

1.5
Time between Partitions Threshold (/)

F
al

se
 P

os
iti

ve
s

(M
B

)
50

60

70

Delay
False Positives

Partition Similarity Threshold (=)
0.8 0.85 0.9 0.95 1

D
el

ay
 (

se
co

nd
s)

0

2

4

6
Partition Similarity Threshold (=)

F
al

se
 P

os
iti

ve
s

(M
B

)

20

40

60

80

Delay
False Positives

Temporary Storage Limit (MB)
0 20 40 60 80 100

D
el

ay
 (

se
co

nd
s)

1

2

3
Temporary Storage Limit

F
al

se
 P

os
iti

ve
s

(M
B

)

64

66

68

Delay
False Positives

Minimum Superblock Size (number of blocks)
15 20 25 30 35 40 45 50

D
el

ay
 (

se
co

nd
s)

0.5

1

1.5

2
Minimum Superblock Size

F
al

se
 P

os
iti

ve
s

(M
B

)

66

68

70

72

Delay
False Positives

Figure 9. Microbenchmarks for Dead Effect 2

of false positives is lower when pstop is higher, as early
stop means fewer blocks get predicted. The block fetching
threshold, denoted by pdownload , affects the final decision of
whether or not to download blocks in the predicted merged
cluster, based on predicted probability. It directly influences
the amount of false positives, with higher threshold resulting
in lower false positives. However, the delays are kept at an
acceptable level only when pdownload is 0.02 or lower.

Time between partitions threshold, denoted δ, controls
how consecutive blocks are merged into the same partition.
Lower value leads to more partitions that are smaller. The
results clearly show that 0.12 is the optimal value with re-
spect to delay. This amount represents the upper limit of the
amount of computation (e.g., image decoding) the applica-
tion does between chunks of data in the same batch of read.
Partition similarity threshold, denoted τ, controls merging
of two similar partitions within the same trace. A value of 1
means the two clusters need to contain the exact same blocks
in order to be merged. The results show that values between
0.8 and 0.9 produce similarly low delay, while higher values
result in higher delay.

Temporary storage limit sets a hard storage limit for stor-
ing blocks fetched speculatively. This does not include the
APK and files that are always stored on the phone. In real-
ity, this buffer can be shared by all applications as long as
they do not run at the same time. The results show that a
small 75 MB buffer is already as good as an infinitely large
buffer. Thus, the amount of temporary space required by
AppStreamer is very small.

The minimium superblock size serves as the stopping
criterion of the first step of the process of generating su-
perblocks. Lower value leads to more precise model and
predictions, but incur longer training time. The results con-
firm that lower values are always better than higher values in
terms of delay. However, we could not complete the bench-
mark using values lower than 17, as the training time sud-
denly jumps from a few minutes to several hours.

7 Discussion
Cloud Gaming. Cloud gaming is an alternative to App-

Streamer, since the game runs on the cloud and only the
video and audio are streamed to the mobile device. As men-
tioned in Section 6.5, the main drawbacks of cloud gaming
are high latency and high bandwidth usage. Within the fore-

seeable future, the amount of bandwidth cloud gaming uses
makes it prohibitively expensive for most users. Latency can
be reduced by moving the cloud closer to the users, but oc-
casional packet losses (common in wireless communication)
still degrades user experience.

Our solution performs all computation on the mobile de-
vice, relying on the cloud storage server only for storage.
Cloud gaming, on the other hand, performs all computation
on the server, at the expense of bandwidth usage and latency.
There is likely a middle ground whereby computation can be
divided between the device and the cloud server. This can
benefit from the long line of prior work in computation of-
floading from resource-constrained devices [7, 23, 13] but
will have to be repurposed due to some domain-specific re-
quirements, including stringent low latency and high degree
of dynamism in gameplay.

Trace Collection and Model Training. Although App-
Streamer will work for all mobile applications without any
modification to the applications themselves, it is necessary
to collect file access traces from a large number of users to
cover most file access patterns. The trace collection system
can be built into the operating system itself, and the user can
decide whether to contribute to trace collection. For the first
version of the application or when the application is updated,
the developer may decide to ship it without AppStreamer, or
collect the traces privately (e.g., from testers) beforehand.
Model training is done by the developer and takes place of-
fline. Parameter optimization can easily be parallelized. We
envision that the developer is responsible for trace collection
and model training because they should be in control of the
user experience of their own application, and the computa-
tion is distributed, compared to relying on a single entity.

Technological Advancements. AppStreamer is still rel-
evant even in the face of constantly improving storage ca-
pacity on smartphones. As more storage becomes available
on smartphones, developers also take advantage of it more
resulting in a larger size of the games. With higher screen
resolution, artists tend to use more detailed texture and 3D
models to improve their games’ visuals.

In addition to reducing storage requirements, App-
Streamer also helps reduce application installation time,
since only a small part of the application needs to be down-
loaded before the user can use it, and the rest is downloaded
only as needed, just like video streaming.

47

8 Conclusion
We set out to see how to reduce the storage pressure

caused by resource-hungry applications on mobile devices.
We found that mobile games were a significant contributor
to the problem. We had the insight that mobile games do not
need all the resources all the time. So if it were possible to
predict which resources would be needed with enough of a
lookahead, then they can be prefetched from a cloud storage
server and cached at the device and thus not cause any stall
for the user. We achieve this goal through the design of App-
Streamer, which uses a Markov Chain to predict which file
blocks will be needed in the near future and parametrizes it
such that the model can be personalized to different speeds
and gameplay styles. We show that for two popular third-
party games, AppStreamer reduces the storage requirement
significantly (more than 85%) without significantly impact-
ing the end user experience. This approach can also help to
reduce the startup delay when an app is being downloaded
and installed as well as to reduce stalls with cloud gaming
by pre-fetching the required resources.
9 Acknowledgments

This material is based in part upon work supported by the
National Science Foundation under Grant Numbers CNS-
1513197 and CNS-1527262 and gift funding from AT&T.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the sponsors.
10 References

[1] Y. Abe, R. Geambasu, K. Joshi, H. A. Lagar-Cavilla, and M. Satya-
narayanan. vtube: efficient streaming of virtual appliances over last-
mile networks. In Proceedings of the 4th annual Symposium on Cloud
Computing, page 16. ACM, 2013.

[2] P. Bonov. Samsung Galaxy Note7 Storage Speed Test.
http://www.gsmarena.com/samsung_galaxy_note7_storage_
speed_test-blog-20049.php, 2017. Accessed: 2017-09-21.

[3] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information
visualizer, an information workspace. In Proceedings of the SIGCHI
Conference on Human factors in computing systems, pages 181–186.
ACM, 1991.

[4] S.-W. Chen, Y. Chang, P. Tseng, C. Huang, and C. Lei. Cloud gaming
latency analysis: Onlive and streammygame delay measurement. In
Proceedings of the 19th ACM international conference on Multimedia,
pages 1269–1272, 2014.

[5] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, S. Saroiu,
and M. Musuvathi. Kahawai: High-quality mobile gaming using GPU
offload. In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services, pages 121–135. ACM,
2015.

[6] X. Developers. Biggest Android Games & Apps. http://forum.
xda-developers.com/showthread.php?t=1766439, 2016. Ac-
cessed: 2016-12-2.

[7] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and X. Chen.
Comet: Code offload by migrating execution transparently. In OSDI,
volume 12, pages 93–106, 2012.

[8] S. A. Gordon. Why Internal Storage Still Beats a MicroSD
Card. https://www.androidpit.com/why-internal-storage-
is-better-than-microsd-card-storage, March 2016. Ac-
cessed: 2017-10-23.

[9] J. Griffioen and R. Appleton. Reducing file system latency using a
predictive approach. In USENIX summer, pages 197–207, 1994.

[10] A. Guides. How to use micro sd card in android marshmal-
low? http://gadgetguideonline.com/android/android-
marshmallow-guide/how-to-use-micro-sd-card-in-
android-marshmallow/, 2016. Accessed: 2017-04-21.

[11] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. A file is not a file: understanding the I/O behavior of

apple desktop applications. ACM Transactions on Computer Systems
(TOCS), 30(3):10, 2012.

[12] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu.
Gaminganywhere: The first open source cloud gaming system. ACM
Transactions on Multimedia Computing, Communications, and Appli-
cations (TOMM), 10(1s):10, 2014.

[13] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai. Hermes: La-
tency optimal task assignment for resource-constrained mobile com-
puting. IEEE Transactions on Mobile Computing, 2017.

[14] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the
coda file system. ACM Transactions on Computer Systems (TOCS),
10(1):3–25, 1992.

[15] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wol-
man, and J. Flinn. Outatime: Using speculation to enable low-latency
continuous interaction for mobile cloud gaming. In Proceedings of
the 13th Annual International Conference on Mobile Systems, Appli-
cations, and Services, pages 151–165. ACM, 2015.

[16] Mediakix. An inside look at the massive $70 billion dollar mo-
bile gaming industry. http://mediakix.com/mobile-gaming-
industry-statistics-market-revenue/#gs.cldw01, 2019. Ac-
cessed: 2019-05-17.

[17] T. Mowry and A. Gupta. Tolerating latency through software-
controlled prefetching in shared-memory multiprocessors. Journal of
parallel and Distributed Computing, 12(2):87–106, 1991.

[18] NDTV. 62 percent of indians run out of smartphone space every 3
months: Sandisk. https://gadgets.ndtv.com/mobiles/news/
62-percent-of-indians-run-out-of-smartphone-space-
every-3-months-sandisk-1829349, 2018. Accessed: 2019-05-17.

[19] A. Pandey. Wd survey reveals: Increase in smartphone usage
leading to growing storage needs. http://www.pcquest.com/wd-
survey-reveals-increase-in-smartphone-usage-leading-
to-growing-storage-needs/, 2017. Accessed: 2017-09-21.

[20] R. Panko. Mobile app usage statistics 2018. https://themanifest.
com/app-development/mobile-app-usage-statistics-2018,
2018. Accessed: 2019-05-17.

[21] P. Quax, P. Monsieurs, W. Lamotte, D. De Vleeschauwer, and N. De-
grande. Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game. In
Proceedings of 3rd ACM SIGCOMM workshop on Network and sys-
tem support for games, pages 152–156. ACM, 2004.

[22] M. Russinovich. Inside the windows vista kernel: Part 3. Microsoft
TechNet Magazine, 2007.

[23] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Ze-
gura. Cosmos: computation offloading as a service for mobile devices.
In Mobihoc, pages 287–296. ACM, 2014.

[24] O. Signal. The state of LTE. https://opensignal.com/reports/
2016/11/state-of-lte, 2016. Accessed: 2016-12-2.

[25] Simon. How to use micro SD card as internal storage in Android
Marshmallow? http://gadgetguideonline.com/android/
android-marshmallow-guide/how-to-use-micro-sd-card-
as-internal-storage-in-android-marshmallow/, 2017.
Accessed: 2017-09-21.

[26] Statista. Share of global mobile website traffic 2015-2019.
https://www.statista.com/statistics/277125/share-
of-website-traffic-coming-from-mobile-devices/, 2019.
Accessed: 2019-05-17.

[27] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescapè. Broadband internet performance: a view from the
gateway. In ACM SIGCOMM computer communication review, vol-
ume 41:4, pages 134–145. ACM, 2011.

[28] S. Suryavansh, C. Bothra, M. Chiang, C. Peng, and S. Bagchi. Tango
of edge and cloud execution for reliability. In Proceedings of the 4th
Workshop on Middleware for Edge Clouds & Cloudlets, pages 10–15.
ACM, 2019.

[29] C. D. Tait and D. Duchamp. Detection and exploitation of file working
sets. In Distributed Computing Systems, 1991., 11th International
Conference on, pages 2–9. IEEE, 1991.

[30] J. S. Vitter and P. Krishnan. Optimal prefetching via data compression.
Journal of the ACM (JACM), 43(5):771–793, 1996.

48

http://www.gsmarena.com/samsung_galaxy_note7_storage_speed_test-blog-20049.php
http://www.gsmarena.com/samsung_galaxy_note7_storage_speed_test-blog-20049.php
http://forum.xda-developers.com/showthread.php?t=1766439
http://forum.xda-developers.com/showthread.php?t=1766439
https://www.androidpit.com/why-internal-storage-is-better-than-microsd-card-storage
https://www.androidpit.com/why-internal-storage-is-better-than-microsd-card-storage
http://gadgetguideonline.com/android/android-marshmallow-guide/how-to-use-micro-sd-card-in-android-marshmallow/
http://gadgetguideonline.com/android/android-marshmallow-guide/how-to-use-micro-sd-card-in-android-marshmallow/
http://gadgetguideonline.com/android/android-marshmallow-guide/how-to-use-micro-sd-card-in-android-marshmallow/
http://mediakix.com/mobile-gaming-industry-statistics-market-revenue/#gs.cldw01
http://mediakix.com/mobile-gaming-industry-statistics-market-revenue/#gs.cldw01
https://gadgets.ndtv.com/mobiles/news/62-percent-of-indians-run-out-of-smartphone-space-every-3-months-sandisk-1829349
https://gadgets.ndtv.com/mobiles/news/62-percent-of-indians-run-out-of-smartphone-space-every-3-months-sandisk-1829349
https://gadgets.ndtv.com/mobiles/news/62-percent-of-indians-run-out-of-smartphone-space-every-3-months-sandisk-1829349
http://www.pcquest.com/wd-survey-reveals-increase-in-smartphone-usage-leading-to-growing-storage-needs/
http://www.pcquest.com/wd-survey-reveals-increase-in-smartphone-usage-leading-to-growing-storage-needs/
http://www.pcquest.com/wd-survey-reveals-increase-in-smartphone-usage-leading-to-growing-storage-needs/
https://themanifest.com/app-development/mobile-app-usage-statistics-2018
https://themanifest.com/app-development/mobile-app-usage-statistics-2018
https://opensignal.com/reports/2016/11/state-of-lte
https://opensignal.com/reports/2016/11/state-of-lte
http://gadgetguideonline.com/android/android-marshmallow-guide/how-to-use-micro-sd-card-as-internal-storage-in-android-marshmallow/
http://gadgetguideonline.com/android/android-marshmallow-guide/how-to-use-micro-sd-card-as-internal-storage-in-android-marshmallow/
http://gadgetguideonline.com/android/android-marshmallow-guide/how-to-use-micro-sd-card-as-internal-storage-in-android-marshmallow/
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/

